7,568 research outputs found

    Finite Width Effects and Gauge Invariance in Radiative WW Production and Decay

    Full text link
    The naive implementation of finite width effects in processes involving unstable particles can violate gauge invariance. For the example of radiative WW production and decay, qqˉνγq\bar q' \to \ell\nu\gamma, at tree level, it is demonstrated how gauge invariance is restored by including the imaginary part of triangle graphs in addition to resumming the imaginary contributions to the WW vacuum polarization. Monte Carlo results are presented for the Fermilab Tevatron.Comment: 10 pages, Revtex, 3 figures submitted separately as uuencoded tarred postscript files, the complete paper is available at ftp://phenom.physics.wisc.edu/pub/preprints/1995/madph-95-878.ps.Z or http://phenom.physics.wisc.edu/pub/preprints/1995/madph-95-878.ps.

    Photon-Photon and Photon-Hadron Interactions at Relativistic Heavy Ion Colliders

    Full text link
    In central collisions at relativistic heavy ion colliders like the Relativistic Heavy Ion Collider RHIC/Brookhaven and the Large Hadron Collider LHC (in its heavy ion mode) at CERN/Geneva, one aims at detecting a new form of hadronic matter --- the Quark Gluon Plasma. We discuss here a complementary aspect of these collisions, the very peripheral ones. Due to coherence, there are strong electromagnetic fields of short duration in such collisions. They give rise to photon-photon and photon-nucleus collisions with high flux up to an invariant mass region hitherto unexplored experimentally. After a general survey photon-photon luminosities in relativistic heavy ion collisions are discussed. Then photon-photon physics at various gamma-gamma-invariant mass scales is discussed. The region of several GeV, relevant for RHIC is dominated by QCD phenomena (meson and vector meson pair production). Invariant masses of up to about 100 GeV can be reached at LHC, and the potential for new physics is discussed. Lepton-pair production, especially electron-positron pair production is copious. Due to the strong fields there will be new phenomena, especially multiple e+e- pair production.Comment: 10 pages, Proceedings of the Erice Summer School on Heavy Ion Physics 199

    Electron-positron pair production in the external electromagnetic field of colliding relativistic heavy ions

    Get PDF
    The results concerning the e+ee^+e^- production in peripheral highly relativistic heavy-ion collisions presented in a recent paper by Baltz {\em{et al.}} are rederived in a very straightforward manner. It is shown that the solution of the Dirac equation directly leads to the multiplicity, i.e. to the total number of electron-positron pairs produced by the electromagnetic field of the ions, whereas the calculation of the single pair production probability is much more involved. A critical observation concerns the unsolved problem of seemingly absent Coulomb corrections (Bethe-Maximon corrections) in pair production cross sections. It is shown that neither the inclusion of the vacuum-vacuum amplitude nor the correct interpretation of the solution of the Dirac equation concerning the pair multiplicity is able the explain (from a fundamental point of view) the absence of Coulomb corrections. Therefore the contradiction has to be accounted to the treatment of the high energy limit.Comment: 6 pages, 4 Postscript figures, uses svjour.cls/svepj.cl

    Bremsstrahlung Pair Production In Relativistic Heavy Ion Collision

    Get PDF
    We calculate production of electron- and muon-pairs by the bremsstrahlung process in hadron collisions and compare it with the dominant two-photon process. Results for the total cross section are given for proton-proton and heavy-ion collisions at energies of the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC).Comment: 6 pages, Latex, 9 figures using epsf-style. Accepted for publication in Z. Phys.

    Photon-Photon and Photon-Hadron Physics at Relativistic Heavy Ion Colliders

    Get PDF
    Due to the coherence of all the protons in a nucleus, there are very strong electromagnetic fields of short duration in relativistic heavy ion collisions. They give rise to quasireal photon-photon and photon-nucleus collisions with a large flux. RHIC will begin its experimental program this year and such types of collisions will be studied experimentally at the STAR detector. RHIC will have the highest flux of (quasireal) photons up to now in the GeV region. At the LHC the invariant mass range available in gamma-gamma-interactions will be of the order of 100 GeV, i.e., in the range currently available at LEP2, but with a higher gamma-gamma-luminosity. Therefore one has there also the potential to study new physics. (Quasireal) photon-hadron (i.e., photon-nucleus) interactions can be studied as well, similar to HERA, at higher invariant masses. Vector mesons can be produced coherently through photon-Pomeron and photon-meson interactions in exclusive reactions such as A+A -> A+A+V, where A is the heavy ion and V=rho,omega,phi or J/Psi.Comment: 6 pages, to be published in the proceedings of the Photon'99 conferenc

    The Semiclassical Coulomb Interaction

    Full text link
    The semiclassical Coulomb excitation interaction is at times expressed in the Lorentz gauge in terms of the electromagnetic fields and a contribution from the scalar electric potential. We point out that the potential term can make spurious contributions to excitation cross sections, especially when the the decay of excited states is taken into account. We show that, through an appropriate gauge transformation, the excitation interaction can be expressed in terms of the electromagnetic fields alone.Comment: 12 pages. Phys. Rev. C, Rapid Communication, in pres

    Mechanisms for Direct Breakup Reactions

    Get PDF
    We review some simple mechanisms of breakup in nuclear reactions. We mention the spectator breakup, which is described in the post-form DWBA. The relation to other formulations is also indicated. An especially important mechanism is Coulomb dissociation. It is a distinct advantage that the perturbation due to the electric field of the nucleus is exactly known. Therefore firm conclusions can be drawn from such measurements. Some new applications of Coulomb dissociation for nuclear astrophysics are discussed.Comment: 17 pages, 5 figures, to appear in the proceedings of the RCNP-TMU Symposium on Spins in Nuclear and Hadronic Reactions, October 16-18 199

    Weak Boson Production Amplitude Zeros; Equalities of the Helicity Amplitudes

    Get PDF
    We investigate the radiation amplitude zeros exhibited by many Standard Model amplitudes for triple weak gauge boson production processes. We show that WZγWZ\gamma production amplitudes have especially rich structure in terms of zeros, these amplitudes have zeros originating from several different sources. It is also shown that TYPE I current null zone is the special case of the equality of the specific helicity amplitudes.Comment: 27 pages, 12 figures, 2 table

    Z\gamma\gamma production with leptonic decays and triple photon production at NLO QCD

    Full text link
    We present a calculation of the O(alpha_s) QCD corrections to the production of a Z boson in association with two photons and to triple photon production at hadron colliders. All final-state photons are taken as real. For the Z boson, we consider the decays both into charged leptons and into neutrinos including all off-shell effects. Numerical results are obtained via a Monte Carlo program based on the structure of the VBFNLO program package. This allows us to implement general cuts and distributions of the final-state particles. We find that the NLO QCD corrections are sizable and significantly exceed the expectations from a scale variation of the leading-order result. In addition, differential distributions of important observables change considerably. The prediction of two-photon-associated Z production with Z decays into neutrinos from the charged-lepton rate works well, once we use an additional cut on the invariant mass of the charged-lepton pair.Comment: 14 pages, 10 figures, 2 table
    corecore