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Abstract. The results concerning the e+e− production in peripheral highly relativistic heavy-ion collisions
presented in a recent paper by Baltz et al. are rederived in a very straightforward manner. It is shown that
the solution of the Dirac equation directly leads to the multiplicity, i.e. to the total number of electron–
positron pairs produced by the electromagnetic field of the ions, whereas the calculation of the single pair
production probability is much more involved. A critical observation concerns the unsolved problem of
seemingly absent Coulomb corrections (Bethe–Maximon corrections) in pair production cross sections. It
is shown that neither the inclusion of the vacuum–vacuum amplitude nor the correct interpretation of the
solution of the Dirac equation concerning the pair multiplicity is able the explain (from a fundamental
point of view) the absence of Coulomb corrections. Therefore the contradiction has to be accounted to the
treatment of the high energy limit.

1 Introduction

The problem of e+e− pair production by the collision of
highly relativistic nuclei has attracted a lot of interest dur-
ing the past few years, since this process will have impli-
cations for future experiments performed at new facilities
as BNL’s RHIC and CERN’s LHC. From the theoretical
side, the result that the Dirac equation can be solved ex-
actly in the electromagnetic background field created by
two nuclei in the limit where the two nuclei are “ultra-
relativistic” [1,2] seemed to lead to the unexpected con-
sequence that the single pair cross section is equal to its
Born value (given by the second order diagram in Fig. 2)1.
The term “ultrarelativistic” is used here for the limiting
case where the Lorentz factor γ becomes large (γ → ∞),
i.e. the velocity of the colliding ions approaches the speed
of light. Of course the problem of pair production in an
external field goes back to the beginning of QED [3,4]. In
connection with the relativistic heavy ion colliders it was
found that the impact parameter dependent probability
in perturbation theory can become larger than one, which
was shown to result in multiple pair production [5–9].

A series of papers on the same topic followed [10–13]
with the aim to show that there must be an error in the
interpretation of the results found in [1]. An interesting

� Work supported by Swiss National Science Foundation
1 Note that this is only true for the total cross section. As was

shown in [6], this is not true for impact parameter dependent
probabilities

observation was finally made in a paper by Baltz et al.
[14], where it was shown that the expression for pair pro-
duction derived from the results in [1] describes the total
number of produced pairs, and not the single pair pro-
duction. Additionally, the importance of taking into ac-
count the vacuum–vacuum transition amplitude when go-
ing over from wave mechanics to the full external field
problem with quantized electron field was pointed out, as
was already discussed in [8,9]. A recent work which treats
the structure of Coulomb and unitarity corrections to the
single and multiple pair production is [15].

We will derive in this paper the main results obtained
in [14] in a very compact way using a different field theo-
retical point of view. The correct expression for the mul-
tiplicity can be derived indeed in a very straightforward
manner from the fundamental equations which define the
S-matrix for the external field problem. We establish the
connection between the single-particle matrix elements
from the solution of the Dirac equation and the pair pro-
duction in a full many-body theory. Furthermore, we give
a strong argument which highlights that the results pro-
vided from the theory of fermions in a classical electro-
magnetic background field are insufficient to explain the
discrepancies concerning Coulomb corrections in the liter-
ature.

It is therefore mandatory to understand the correct in-
terpretation of the results obtained from “infinite γ” cal-
culations and their implications on real electromagnetic
processes, as was suggested in the work of Lee and Mil-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by edoc

https://core.ac.uk/display/18252847?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


546 A. Aste et al.: Electron–positron pair production in the external electromagnetic field

stein [13] where they have shown that Coulomb corrections
can be obtained by the correct regularization of matrix el-
ements.

2 The external field approximation for QED

For highly relativistic heavy-ion collisions one usually as-
sumes that the ions of electric charge Z1e and Z2e are suf-
ficiently energetic and massive so that the deviation from
straight-line trajectories can be neglected. The trajecto-
ries of the two ions are then, respectively, z = ±t (c = 1),
x⊥ = b/2, and there is a gauge in which the potential of
the two ions has the following form [16]:

Aµ(t,x) = Z1eδ(v+x)v
µ
+ log

(
(x⊥ − b/2)2

b2

)

+Z2eδ(v−x)v
µ
− log

(
(x⊥ + b/2)2

b2

)
, (1)

where vµ
± = (1, 0, 0,±1)/

√
2. The fact that the two electro-

magnetic fields are compressed due to the Lorentz contrac-
tion to a sheet in the b plane together with their structure
in space-time allows for the exact solution of the Dirac
equation in this case.

We will deal in the following with the general external
field problem without referring to the special form of the
electromagnetic field created by ultrarelativistic ions as
given by (1), in order to clarify how the solution of the
Dirac equation for the electron wave function and the full
S-matrix for the quantized electron field in an external
electromagnetic field are related to each other.

2.1 Construction of the S-matrix

In order to construct the full S-matrix of QED in the ex-
ternal field approximation, we start from a one-particle
dynamics, defined by a time-dependent Hamiltonian act-
ing on a state Ψ described by a Dirac spinor Ψ(t,x)

H(t) = H0 + V (t), (2)

where V (t) contains the interaction with the external elec-
tromagnetic field given by

V (t,x) = e(φ(t,x) − αA(t,x)). (3)

The potentials are assumed to vanish for t → ±∞ in such
a way that the wave operators exist as strong limits,

W in
out

= lim
t→±∞U(t, 0)+e−iH0t, (4)

and define a unitary S-matrix S = W+
outWin. Since we pre-

suppose free dynamics for t → ±∞, we can base second
quantization on the Fock representation of the free Dirac
field. The one-particle sector of the Fock space then con-
sists naturally of a positive spectral subspace (electrons)

and negative spectral subspace (positrons) of the Hilbert
space of Dirac four-spinors

H1 = (L2(R3))4 = P 0
+H1 ⊕ P 0

−H1 (5)

with the standard inner product. Here, P 0
± denote the cor-

responding spectral projection operators of the free Dirac
Hamiltonian. The quantized Dirac field is then defined as
usual in the Schrödinger picture:

ψ(f) = b(P 0
+f) + d(P 0

−f)+ = b(f+) + d(f−)+. (6)

The electron annihilation operator b(f+) destroys an elec-
tron with wave function f+, and the positron emission
operator d(f−)+ produces a positron with wave function
f−. The annihilation and emission operators fulfill the
fermionic anticommutation relations

{b(f+), b(g+)+} = (f+, g+),
{d(f−)+, d(g−)} = (f−, g−), (7)

and the Fock vacuum Ω is defined by

b(f+)Ω = d(f−)Ω = 0, ∀f ∈ H1 . (8)

Note that b(f+) depends antilinearly on f+, whereas d(f−)
depends linearly on f−. This explains the slight difference
in the commutation relations for electron and positron
operators in (7). We mention that naturally the widely
used field operators can be defined which correspond to
the operators introduced above according to

b(f+)+ =
∫

d3xb(x)+f+(x), (9)

d(f−)+ =
∫

d3xd(x)+f∗
−(x), (10)

or, given an arbitrary orthonormal basis fj in P 0
+H1 and

gk in P 0
−H1,

b+(x) =
∑

j

b(fj)+f∗
j (x), d+(x) =

∑
k

d(gk)+gk(x),

(11)
such that ψ(x) = b(x) + d(x)+ fulfills the well-known dis-
tributional identity

{ψ(x), ψ(x′)+} = 14δ
(3)(x − x′). (12)

The one-particle S-matrix, obtained via its perturba-
tion series

S =
∞∑

n=0

(−i)n

+∞∫
−∞

dt1

t1∫
−∞

dt2...

tn−1∫
−∞

dtnṼ (t1)...Ṽ (tn),

(13)
where

Ṽ (t) = eiH0tV (t)e−iH0t, (14)

or by solving directly the Dirac equation with the external
field, can be written as

S =

(
S++ S+−
S−+ S−−

)
, S−1 = S+ =

(
S+

++ S+
+−

S+
−+ S+

−−

)
, (15)
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if we define S±± = P 0
±SP

0
± and S+

±± = P 0
±S

+P 0
±. It is

often said that S++ and S−− are related to electron and
positron scattering, whereas S+− and S−+ are related to
pair creation and annihilation. But the connection of S±±
to different measurable quantities has to be treated care-
fully. It should be stressed that the one-particle Dirac the-
ory has no consistent physical interpretation, but only the
corresponding second quantized many-particle theory in
Fock space which we are now going to discuss.

If one lifts the one-particle Hamiltonian with indefinite
energy spectrum to the Fock space

H =
∑
jk

[
(fj , Hfk)b(fj)+b(fk) − (gj , Hgk)d(gk)+d(gj)

]
,

(16)
then the Dirac field operator fulfills the Heisenberg equa-
tions of motion

i
d
dt
ψ(U−1(t, 0)f) = [ψ(U−1(t, 0)f),H], (17)

i
d
dt
ψ(U−1(t, 0)f)+ = [ψ(U−1(t, 0)f)+,H]. (18)

Roughly speaking, (16) simply accounts for the fact that
the total energy of a general Fock state should be given
by the sum of energies of each single particle. Note also
the important minus sign in (16).

The definition (8) of the Fock vacuum would lead in
the case of time-dependent external fields to Fock repre-
sentations which continuously change in time. To avoid
this somewhat odd construction, we retreat to scattering
theory by defining the second quantized S-matrix S in cor-
respondence to the Heisenberg equations of motion (18)
by

ψ(S+f) = S−1ψ(f)S, (19)
ψ(S+f)+ = S−1ψ(f)+S, ∀f ∈ H1. (20)

It is even possible to give an explicit normally ordered
expression for S [17,18]

S = CeS+−S−1
−−b+d+

: e(S+−1
++ −1)b+b :

× : e(1−S−1
−−)dd+

: eS−1
−−S−+db, (21)

where the terms in the exponents are a shorthand for the
operators

Ab+b ≡
∑
jk

(fj , Afk)b(fj)+b(fk), (22)

Ab+d+ ≡
∑
jk

(fj , Agk)b(fj)+d(gk), (23)

and similarly for Add+ and Adb. Note that S−1
−− is the

inverse of the matrix S−− alone and therefore not identi-
cal to S+

−− = P 0
−S

−1P 0
−

2. C denotes the vacuum–vacuum

2 In exceptional cases, the form of the S-matrix is slightly
different, which has no physical implications [17]

Z1

Z2

e-

e+

Fig. 1. Lowest order contribution to the vacuum–vacuum tran-
sition amplitude and single pair production graph containing
a vacuum bubble

transition amplitude (Ω,SΩ). This vacuum–vacuum tran-
sition amplitude is always present, but whereas it has ab-
solute value one, e.g., for static fields (and is therefore
dropped in the calculations), C is indispensable for the
unitarity of S, as has been verified in [14] by perturba-
tion theory. In our case where two static Coulomb fields
are moving relatively to each other, the lowest order con-
tribution to the vacuum–vacuum transition amplitude is
given by a loop graph shown in Fig. 1. It is a well-known
result that all vacuum graphs appearing in pair production
amplitudes (see the example in Fig. 1) can be absorbed in
the factor C. Additionally, the lowest order contribution is
finite due to gauge invariance, whereas higher order contri-
butions to the vacuum–vacuum transition amplitude are
finite due to power counting arguments. Therefore, the
theory is free of any regularization problems.

Equation (21) is the important link showing the rela-
tion between the (single-particle) S-matrix from the so-
lution of the Dirac equation and the general many-body
theory.

We finally mention that the S-matrix S in Fock space
exists, if and only if S+− is a Hilbert-Schmidt operator.
This condition is not satisfied with the potential (1) as it
stands, but it can be achieved by appropriate regulariza-
tion.

2.2 Multiplicity

From (19) it follows immediately that

b(f)S = S[b(S+
++f) + d(S+

−+f)+], (24)

a simple identity which allows one to easily derive the
average number of electron–positron pairs produced by
the external field. The number of pairs in the final state is
equal to the number of electrons in the final state, which
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can be calculated from the electron (or positron) number
operator

Ne =
∑

n

b(fn)+b(fn), Np =
∑

n

d(gn)+d(gn). (25)

Therefore, we obtain for the number of pairs in the final
state created by the external field out of the vacuum SΩ

N =

(
SΩ,

∑
n

b(fn)+b(fn)SΩ

)

=
∑

n

(b(fn)SΩ, b(fn)SΩ). (26)

Using (24), this can be written as

N =
∑

n

(d(S+
−+fn)Ω, d(S+

−+fn)Ω)

=
∑

n

(fn, S+−S+
−+fn)

= Tr(S+−S+
−+), (27)

or equivalently, using the positron number operator

N = Tr(S−+S
+
+−). (28)

Therefore, the results obtained from the solution of the
Dirac equation for S−+ [1] must not be misinterpreted as
the single pair production amplitude. Furthermore, this
result for which a lengthy derivation has been given in
[14], follows here in an almost trivial way.

2.3 Single pair production probability

In order to derive the production probability for a single
electron–positron pair with wave functions Φe and Φp, we
have to compute first the S-matrix element

Mep = (b(Φe)+d(Φp)+Ω,SΩ)

= C(Ω, d(Φp)+b(Φe)+eS+−S−1
−−b+d+

Ω). (29)

The definition (22) and the anticommutation rules (7) en-
able us after some algebra to derive the commutation rules
[18]

b(f)eS+−S−1
−−b+d+

(30)

= eS+−S−1
−−b+d+

(b(f) + d((S+−S−1
−−)+P 0

+f)+),

d(f)eS+−S−1
−−b+d+

(31)

= eS+−S−1
−−b+d+

(d(f) − b(S+−S−1
−−P

0
−f)+),

which reduce the matrix element to the form

Mep = C(Ω, d(Φp)d((S+−S−1
−−)+P 0

+Φe)+Ω)

= C(Φe, S+−S−1
−−Φp). (32)

The matrix M = S+−S−1
−− contains the additional scat-

tering factor S−1
−−, which is missing in the literature when

differential cross sections for pair production are consid-
ered. As will be explained below, M is identical to the
result using the usual Feynman propagators.

Unfortunately, the calculation of an integral operator
like S−1

−− is not a trivial task, but from (15) we can derive
the unitarity condition

S−+S
+
+− + S−−S+

−− = P 0
−, (33)

which can be multiplied from the left by S+−S−1
−− leading

to the equation

M = S+−S+
−− + MS−+S

+
+−, (34)

which can be iterated.

2.4 n-pair production

The vacuum–vacuum transition probability |C|2 can be
derived from

1 = (SΩ,SΩ) = |C|2(eMb+d+
Ω, eMb+d+

Ω), (35)

with the result [17]

|C|−2 = det(1 + M+M). (36)

It is clear that the probability Ptot to produce an arbi-
trary number of pairs is equal to 1−|C|2. The well-known
identity

log det(1 + M+M) = Tr log(1 + M+M) (37)

leads to

1
|C|2 = exp

(
−Tr

∞∑
n=1

(−M+M)n

n

)
, (38)

or

1
|C|2

∞∑
n=1

Pn =
1

|C|2 − 1 (39)

= exp

(
−Tr

∞∑
n=1

(−M+M)n

n

)
− 1.

Utilizing the expansion in (39) allows one to write down
the n-pair production probability by collecting all terms
in (39) containing n M+M terms, e.g.

P2 =
|C|2
2

[(Tr(M+M))2 − Tr((M+M)2)]. (40)

This can be understood if one takes a look at the ac-
tual calculation of the n-pair production probability anal-
ogous to the single pair production calculation presented
in Sect. 2.3. It follows also from the expression of the deter-
minant in terms of antisymmetric tensor products which
can be found in [19]

det(1 +A) =
∞∑

n=0

Tr(Λn(A)), (41)
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if A is a trace-class operator. Λn(A) is the tensor product
of A over the antisymmetric n-particle space.

If “exchange terms” of the form Tr((M+M)n) are ne-
glected in (39), then the probability of producing n pairs
goes over into a Poisson distribution

Pn → e−Tr(M+M) (Tr(M+M))n

n!
, (42)

which seems to be a reasonable approximation due to the
correlation between the momenta of electron and positron
in this case, as was also found in the calculations per-
formed in [20]. The Poisson distribution had already been
derived theoretically in an earlier work [5]. There, the sud-
den (or Glauber) approximation and a quasiboson approx-
imation for e+e− pairs was assumed, leading to a sim-
ple but very instructive example which elucidates the pair
production mechanism. It is remarkable that the Poisson
distribution gives the multiplicity of particles:

NPoisson = Tr(M+M), (43)

quite similar to the exact one of (28).

2.5 Perturbation theory

We briefly mention here the perturbative expansion of the
previously discussed matrix elements. As follows from the
solution of the Dirac equation the perturbative expansion
of S±± is given by retarded propagators

Sret(p) =
/p+m

p2 −m2 + ip00
,

S
(n)
±±(p,q) = −i

en

(2π)2n−1P
0
±(p)γ0

∫
d4p1...d4pn−1

× /̂A(p− p1)Sret(p1) /̂A(p1 − p2)...

Sret(pn−1) /̂A(pn−1 − q)P 0
±(q). (44)

The projection operators are given in momentum space
by

P 0
±(p) =

1
2E

(E ± αp + βm), (45)

where α and β are standard Dirac matrices. The pair pro-
duction amplitude, on the contrary, has to be calculated
using Feynman propagators

SF (p) =
/p+m

p2 −m2 + i0
,

(S+−S−1
−−)(n)(p,q)

= −i
en

(2π)2n−1P
0
+(p)γ0

∫
d4p1...d4pn−1

× /̂A(p− p1)SF (p1) /̂A(p1 − p2)...

SF (pn−1) /̂A(pn−1 − q)P 0
−(q). (46)

Equations (44) and (46) represent well-known results from
(quantum) field theory which are discussed in many stan-
dard textbooks [21,22]. An explicit calculation which

shows how the transition from retarded to Feynman prop-
agators takes place when S(n)

±± and (S+−S−1
−−)(n) are com-

pared can be found in [18]. It is the inverse of S−− which
is responsible for this transition.

Since it is possible to solve the Dirac equation exactly
in the ultrarelativistic limit, it is clear that the retarded
propagator is also known in this case, and is therefore a
much simpler object than the Feynman propagator from
the calculational point of view.

3 Coulomb corrections and multiplicity

The introduction in [14] may lead to the erroneous sup-
position that the absence of Coulomb corrections in the
high energy limit as derived in [1] could be attributed
to the difference in the interpretation between the mul-
tiplicity N = Tr(S+−S+

−+) and the single pair produc-
tion probability P1 = |C|2Tr(M+M). Here we want to
present some arguments that show that such an assump-
tion cannot hold. Coulomb corrections and “unitarity cor-
rections” (following the terminology used in [15]) can be
treated as two different phenomena, which stem from dif-
ferent sources. Whereas unitarity corrections are due to
many-particle aspects, Coulomb corrections affect the ma-
trix element M directly.

Since the theory of pair production developed above is
valid quite generally, we can consider the special case with
two ions that have charge numbers Z1 and Z2, in the limit
where Z1α remains fixed but Z2α goes to zero. Expanding
in powers of Z2α and realizing that the potential of the
ion with charge Z1e is a static Coulomb potential in its
rest frame, we find that both S−+ and S+− are at least of
order Z2α. Using the recursion relation of (34), the second
term on the right hand side is at least of order (Z2α)3 and
can therefore be neglected. Therefore, if only contributions
at first order in Z2α are kept (whereas contributions at
higher orders in Z1α are important, as is illustrated in
Fig. 2), the matrix element for pair production is found to
be M ≈ S+−S+

−−. This can also be seen directly from the
definition M = S+−S−1

−− and the fact that for a static field
we have no off-diagonal elements in S with respect to the
block structure given in (15) and therefore S−1

−− = S+
−−.

Summing over all final states we get for P1 (keeping in
mind that at this order of Z2α also |C|2 = 1)

P1 ≈ Tr(S+−S+
−−S−−S+

−+) = Tr(S+−S+
−+). (47)

Following the arguments for the high energy limit of [1]
this probability should now be identical to the lowest or-
der result. On the other hand the limit performed here
corresponds exactly to the one which is done in order to
derive the Bethe–Maximon theory [23,10]. Therefore the
discrepancy between the two results is also present in this
case, independently of the many-particle aspects. Compar-
ing the two multiplicities N and NPoisson one finds that
they start to disagree only at fourth order in Z2α.

Therefore one has to conclude that the discrepancies in
the literature concerning Coulomb corrections cannot be
traced back to the many-body aspects of pair production
in this case.
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Z1

Z2

e-

e+

Z1

Z2

e-

e+

Fig. 2. Examples of graphs contributing to pair production
for Z2α � 1

4 Conclusion and outlook

In this paper we have derived in a very straightforward
way the link between the single-particle S-matrix elements
obtained from the solution of the Dirac equation and its
relation to the multiplicity and single pair production
probability. The term S−1

−−, which is missing in many pa-
pers and which is important for the calculation of the
differential cross section with respect to both electrons
and positrons, was introduced. A careful analysis of the
limit which is relevant for a comparison with the Bethe–
Maximon results shows that the absence of Coulomb cor-
rections in this high energy limit cannot be understood by
a purely conceptional treatment of the external field prob-
lem. The problem therefore seems to lie in the way this
high energy limit is made. That a too simplified use of the
eikonal approximation leads to a result in contradiction
with the Bethe–Maximon one was already pointed out in
[24], whereas within a more refined analysis as given in
[25] there is no disagreement.

In principle the pair production in external fields is
well understood, but the numerical evaluation of the Cou-
lomb corrections for two highly charged ions, especially at
small impact parameter, still needs to be found.
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