186 research outputs found
Lithium depletion in solar-like stars: effect of overshooting based on realistic multi-dimensional simulations
We study lithium depletion in low-mass and solar-like stars as a function of
time, using a new diffusion coefficient describing extra-mixing taking place at
the bottom of a convective envelope. This new form is motivated by
multi-dimensional fully compressible, time implicit hydrodynamic simulations
performed with the MUSIC code. Intermittent convective mixing at the convective
boundary in a star can be modeled using extreme value theory, a statistical
analysis frequently used for finance, meteorology, and environmental science.
In this letter, we implement this statistical diffusion coefficient in a
one-dimensional stellar evolution code, using parameters calibrated from
multi-dimensional hydrodynamic simulations of a young low-mass star. We propose
a new scenario that can explain observations of the surface abundance of
lithium in the Sun and in clusters covering a wide range of ages, from
50 Myr to 4 Gyr. Because it relies on our physical model of convective
penetration, this scenario has a limited number of assumptions. It can explain
the observed trend between rotation and depletion, based on a single additional
assumption, namely that rotation affects the mixing efficiency at the
convective boundary. We suggest the existence of a threshold in stellar
rotation rate above which rotation strongly prevents the vertical penetration
of plumes and below which rotation has small effects. In addition to providing
a possible explanation for the long standing problem of lithium depletion in
pre-main sequence and main sequence stars, the strength of our scenario is that
its basic assumptions can be tested by future hydrodynamic simulations.Comment: 7 pages, 3 figures, Accepted for publication in ApJ Letter
An ensemble-based approach to climate reconstructions
Data assimilation is a promising approach to obtain climate reconstructions that are both consistent with observations of the past and with our understanding of the physics of the climate system as represented in the climate model used. Here, we investigate the use of ensemble square root filtering (EnSRF) – a technique used in weather forecasting – for climate reconstructions. We constrain an ensemble of 29 simulations from an atmosphere-only general circulation model (GCM) with 37 pseudo-proxy temperature time series. Assimilating spatially sparse information with low temporal resolution (semi-annual) improves the representation of not only temperature, but also other surface properties, such as precipitation and even upper air features such as the intensity of the northern stratospheric polar vortex or the strength of the northern subtropical jet. Given the sparsity of the assimilated information and the limited size of the ensemble used, a localisation procedure is crucial to reduce "overcorrection" of climate variables far away from the assimilated information
Assessment of parameters describing representativeness of air quality in-situ measurement sites
The atmospheric layer closest to the ground is strongly influenced by variable surface fluxes (emissions, surface deposition) and can therefore be very heterogeneous. In order to perform air quality measurements that are representative of a larger domain or a certain degree of pollution, observatories are placed away from population centres or within areas of specific population density. Sites are often categorised based on subjective criteria that are not uniformly applied by the atmospheric community within different administrative domains yielding an inconsistent global air quality picture. A novel approach for the assessment of parameters reflecting site representativeness is presented here, taking emissions, deposition and transport towards 34 sites covering Western and Central Europe into account. These parameters are directly inter-comparable among the sites and can be used to select sites that are, on average, more or less suitable for data assimilation and comparison with satellite and model data. Advection towards these sites was simulated by backward Lagrangian Particle Dispersion Modelling (LPDM) to determine the sites' average catchment areas for the year 2005 and advection times of 12, 24 and 48 h. Only variations caused by emissions and transport during these periods were considered assuming that these dominate the short-term variability of most but especially short lived trace gases. The derived parameters describing representativeness were compared between sites and a novel, uniform and observation-independent categorisation of the sites based on a clustering approach was established. Six groups of European background sites were identified ranging from <i>generally remote</i> to more polluted <i>agglomeration</i> sites. These six categories explained 50 to 80% of the inter-site variability of median mixing ratios and their standard deviation for NO<sub>2</sub> and O<sub>3</sub>, while differences between group means of the longer-lived trace gas CO were insignificant. The derived annual catchment areas strongly depended on the applied LPDM and input wind fields, the catchment settings and the year of analysis. Nevertheless, the parameters describing representativeness showed considerably less variability than the catchment geometry, supporting the applicability of the derived station categorisation
Interstellar Turbulence and Star Formation
We provide a brief overview of recent advances and outstanding issues in
simulations of interstellar turbulence, including isothermal models for
interior structure of molecular clouds and larger-scale multiphase models
designed to simulate the formation of molecular clouds. We show how
self-organization in highly compressible magnetized turbulence in the
multiphase ISM can be exploited in simple numerical models to generate
realistic initial conditions for star formation.Comment: 8 pages, 5 color figures; submitted to Proceedings of IAU Symposium
270 "Computational Star Formation" held in Barcelona, May 31 - June 4, 201
3D simulations of RS Oph: from accretion to nova blast
RS Ophiuchi is a recurrent nova with a period of about 22 years, consisting
of a wind accreting binary system with a white dwarf (WD) very close to the
Chandrasekhar limit and a red giant star (RG). The system is considered a prime
candidate to evolve into an SNIa. We present a 3D hydrodynamic simulation of
the quiescent accretion and the subsequent explosive phase. The computed
circumstellar mass distribution in the quiescent phase is highly structured
with a mass enhancement in the orbital plane of about a factor of 2 as compared
to the poleward directions. The simulated nova remnant evolves aspherically,
propagating faster toward the poles. The shock velocities derived from the
simulations are in agreement with those derived from observations. For v_RG =
20 km/s and for nearly isothermal flows, we derive a mass transfer rate to the
WD of 10% of the mass loss of the RG. For an RG mass loss of 10^{-7} solar
masses per year, we found the orbit of the system to decay by 3% per million
years. With the derived mass transfer rate, multi-cycle nova models provide a
qualitatively correct recurrence time, amplitude, and fastness of the nova. Our
simulations provide, along with the observations and nova models, the third
ingredient for a deeper understanding of the recurrent novae of the RS Oph
type. In combination with recent multi-cycle nova models, our results suggests
that the WD in RS Oph will increase in mass. Several speculative outcomes then
seem plausible. The WD may reach the Chandrasekhar limit and explode as an SN
Ia. Alternatively, the mass loss of the RG could result in a smaller Roche
volume, a common envelope phase, and a narrow WD+WD system. Angular momentum
loss due to graviational wave emission could trigger the merger of the two WDs
and - perhaps - an SN Ia via the double degenerate scenario.Comment: Accepted by Astronomy & Astrophysics Letters, 4 pages, 5 figures;
Version with high resolution figures and movie can be found at
http://www.astro.phys.ethz.ch/staff/folini/private/research/rsoph/rsoph.htm
Benchmarking the Multi-dimensional Stellar Implicit Code MUSIC
11 pages, 11 figures, accepted for publication in A&AWe present the results of a numerical benchmark study for the MUlti-dimensional Stellar Implicit Code (MUSIC) based on widely applicable two- and three-dimensional compressible hydrodynamics problems relevant to stellar interiors. MUSIC is an implicit large eddy simulation code that uses implicit time integration, implemented as a Jacobian-free Newton Krylov method. A physics based preconditioning technique which can be adjusted to target varying physics is used to improve the performance of the solver. The problems used for this benchmark study include the Rayleigh-Taylor and Kelvin-Helmholtz instabilities, and the decay of the Taylor-Green vortex. Additionally we show a test of hydrostatic equilibrium, in a stellar environment which is dominated by radiative effects. In this setting the flexibility of the preconditioning technique is demonstrated. This work aims to bridge the gap between the hydrodynamic test problems typically used during development of numerical methods and the complex flows of stellar interiors. A series of multi-dimensional tests are performed and analysed. Each of these test cases is analysed with a simple, scalar diagnostic, with the aim of enabling direct code comparisons. As the tests performed do not have analytic solutions we verify MUSIC by comparing to established codes including ATHENA and the PENCIL code. MUSIC is able to both reproduce behaviour from established and widely-used codes as well as results expected from theoretical predictions. This benchmarking study concludes a series of papers describing the development of the MUSIC code and provides confidence in the future applications.This project has received funding from the European
Unions Seventh Framework Programme for research, technological development
and demonstration under grant agreement no 320478. The calculations for this
paper were performed on the DiRAC Complexity machine, jointly funded by
STFC and the Large Facilities Capital Fund of BIS, and the University of Exeter
Super- computer, a DiRAC Facility jointly funded by STFC, the Large Facilities
Capital Fund of BIS and the University of Exeter. We are very thankful to Colin
McNally for providing his results for the Kelvin-Helmholtz test
Structuring and support by Alfven waves around prestellar cores
Observations of molecular clouds show the existence of starless, dense cores,
threaded by magnetic fields. Observed line widths indicate these dense
condensates to be embedded in a supersonically turbulent environment. Under
these conditions, the generation of magnetic waves is inevitable. In this
paper, we study the structure and support of a 1D plane-parallel,
self-gravitating slab, as a monochromatic, circularly polarized Alfven wave is
injected in its central plane. Dimensional analysis shows that the solution
must depend on three dimensionless parameters. To study the nonlinear,
turbulent evolution of such a slab, we use 1D high resolution numerical
simulations. For a parameter range inspired by molecular cloud observations, we
find the following. 1) A single source of energy injection is sufficient to
force persistent supersonic turbulence over several hydrostatic scale heights.
2) The time averaged spatial extension of the slab is comparable to the
extension of the stationary, analytical WKB solution. Deviations, as well as
the density substructure of the slab, depend on the wave-length of the injected
wave. 3) Energy losses are dominated by loss of Poynting-flux and increase with
increasing plasma beta. 4) Good spatial resolution is mandatory, making similar
simulations in 3D currently prohibitively expensive.Comment: 13 pages, 8 figures, accepted for publication in A&A. The manuscript
with full color, high-resolution, figures can be downloaded from
http://www.astro.phys.ethz.ch/papers/folini/folini_p_nf.htm
MHD numerical simulations of colliding winds in massive binary systems - I. Thermal vs non-thermal radio emission
In the past few decades detailed observations of radio and X-rays emission
from massive binary systems revealed a whole new physics present in such
systems. Both thermal and non-thermal components of this emission indicate that
most of the radiation at these bands originates in shocks. OB and WR stars
present supersonic and massive winds that, when colliding, emit largely due to
the free-free radiation. The non-thermal radio and X-ray emissions are due to
synchrotron and inverse compton processes, respectively. In this case, magnetic
fields are expected to play an important role on the emission distribution. In
the past few years the modeling of the free-free and synchrotron emissions from
massive binary systems have been based on purely hydrodynamical simulations,
and ad hoc assumptions regarding the distribution of magnetic energy and the
field geometry. In this work we provide the first full MHD numerical
simulations of wind-wind collision in massive binary systems. We study the
free-free emission characterizing its dependence on the stellar and orbital
parameters. We also study self-consistently the evolution of the magnetic field
at the shock region, obtaining also the synchrotron energy distribution
integrated along different lines of sight. We show that the magnetic field in
the shocks is larger than that obtained when the proportionality between
and the plasma density is assumed. Also, we show that the role of the
synchrotron emission relative to the total radio emission has been
underestimated.Comment: MNRAS accepte
- …
