In the past few decades detailed observations of radio and X-rays emission
from massive binary systems revealed a whole new physics present in such
systems. Both thermal and non-thermal components of this emission indicate that
most of the radiation at these bands originates in shocks. OB and WR stars
present supersonic and massive winds that, when colliding, emit largely due to
the free-free radiation. The non-thermal radio and X-ray emissions are due to
synchrotron and inverse compton processes, respectively. In this case, magnetic
fields are expected to play an important role on the emission distribution. In
the past few years the modeling of the free-free and synchrotron emissions from
massive binary systems have been based on purely hydrodynamical simulations,
and ad hoc assumptions regarding the distribution of magnetic energy and the
field geometry. In this work we provide the first full MHD numerical
simulations of wind-wind collision in massive binary systems. We study the
free-free emission characterizing its dependence on the stellar and orbital
parameters. We also study self-consistently the evolution of the magnetic field
at the shock region, obtaining also the synchrotron energy distribution
integrated along different lines of sight. We show that the magnetic field in
the shocks is larger than that obtained when the proportionality between B
and the plasma density is assumed. Also, we show that the role of the
synchrotron emission relative to the total radio emission has been
underestimated.Comment: MNRAS accepte