We study lithium depletion in low-mass and solar-like stars as a function of
time, using a new diffusion coefficient describing extra-mixing taking place at
the bottom of a convective envelope. This new form is motivated by
multi-dimensional fully compressible, time implicit hydrodynamic simulations
performed with the MUSIC code. Intermittent convective mixing at the convective
boundary in a star can be modeled using extreme value theory, a statistical
analysis frequently used for finance, meteorology, and environmental science.
In this letter, we implement this statistical diffusion coefficient in a
one-dimensional stellar evolution code, using parameters calibrated from
multi-dimensional hydrodynamic simulations of a young low-mass star. We propose
a new scenario that can explain observations of the surface abundance of
lithium in the Sun and in clusters covering a wide range of ages, from ∼
50 Myr to ∼ 4 Gyr. Because it relies on our physical model of convective
penetration, this scenario has a limited number of assumptions. It can explain
the observed trend between rotation and depletion, based on a single additional
assumption, namely that rotation affects the mixing efficiency at the
convective boundary. We suggest the existence of a threshold in stellar
rotation rate above which rotation strongly prevents the vertical penetration
of plumes and below which rotation has small effects. In addition to providing
a possible explanation for the long standing problem of lithium depletion in
pre-main sequence and main sequence stars, the strength of our scenario is that
its basic assumptions can be tested by future hydrodynamic simulations.Comment: 7 pages, 3 figures, Accepted for publication in ApJ Letter