54 research outputs found

    Kinetic Release Studies of Antibiotic Patches for Local Transdermal Delivery.

    Get PDF
    This study investigates the usage of electrohydrodynamic (EHD)-3D printing for the fabrication of bacterial cellulose (BC)/polycaprolactone (PCL) patches loaded with different antibiotics (amoxicillin (AMX), ampicillin (AMP), and kanamycin (KAN)) for transdermal delivery. The composite patches demonstrated facilitated drug loading and encapsulation efficiency of drugs along with extended drug release profiles. Release curves were also subjected to model fitting, and it was found that drug release was optimally adapted to the Higuchi square root model for each drug. They performed a time-dependent and diffusion-controlled release from the patches and followed Fick's diffusion law by the Korsmeyer-Peppas energy law equation. Moreover, produced patches demonstrated excellent antimicrobial activity against Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) strains, so they could be helpful in the treatment of chronic infectious lesions during wound closures. As different tests have confirmed, various types of antibiotics could be loaded and successfully released regardless of their types from produced BC/PCL patches. This study could breathe life into the production of antibiotic patches for local transdermal applications in wound dressing studies and improve the quality of life of patients

    The measurement of the noise-equivalent spectral radiance of SIMBIO-SYS/VIHI spectrometer

    Get PDF
    We report about the measurement of the Noise- Equivalent Spectral Radiance (NESR) of the VIHI imaging spectromter aboard ESA's Bepi Colombo mission to Mercury. The knowledge of the NESR allows to determine the capability of an optical detector to measure faint signals. A description of the setup used to determine the NESR during the prelaunch calibration campaign is given. The processing of the data col- lected at various operative temperatures and integration times is described. The sensitivity study of the NESR has been performed at the expected detector's temperatures and integration times with the goal to determine the minimum spectral radiance at which VIHI is sensitive during the different observation phases of the mission. A simulation of the expected Signal-to-Noise Ratio (SNR) of VIHI during the different orbital phases is provided

    Radiometric calibration of the SIMBIO-SYS STereo imaging Channel

    Get PDF
    The STereo imaging Channel (STC) is a double wide-angle camera developed to be one of the channels of the SIMBIOSYS instrument onboard of the ESA BepiColombo mission to Mercury. STC main goal is to map in 3D the whole Mercury surface. The geometric and radiometric responses of the STC Proto Flight model have been characterized on-ground during the calibration campaign. The derived responses will be used to calibrate the STC images that will be acquired in flight. The aim is to determine the functions linking the detected signal in digital number to the radiance of the target surface in physical units. The result of the radiometric calibration consists in the determination of well-defined quantities: (1) the dark current as a function of the integration time and of the detector temperature, settled and controlled to be stable at 268 K; (2) the read out noise, which is associated with the noise signal of the read-out electronic; and (3) the fixed pattern noise, which is generated by the different response of each pixel. Once these quantities are known, the photon response and the photoresponse non-uniformity, which represents the variation of the photon responsivity of a pixel in an array, can be derived. The final result of the radiometric calibration is the relation between the radiance of an accurately known and uniform source, and the digital numbers measured by the detector

    SIMBIO-SYS : Scientific Cameras and Spectrometer for the BepiColombo Mission

    Get PDF
    The SIMBIO-SYS (Spectrometer and Imaging for MPO BepiColombo Integrated Observatory SYStem) is a complex instrument suite part of the scientific payload of the Mercury Planetary Orbiter for the BepiColombo mission, the last of the cornerstone missions of the European Space Agency (ESA) Horizon + science program. The SIMBIO-SYS instrument will provide all the science imaging capability of the BepiColombo MPO spacecraft. It consists of three channels: the STereo imaging Channel (STC), with a broad spectral band in the 400-950 nm range and medium spatial resolution (at best 58 m/px), that will provide Digital Terrain Model of the entire surface of the planet with an accuracy better than 80 m; the High Resolution Imaging Channel (HRIC), with broad spectral bands in the 400-900 nm range and high spatial resolution (at best 6 m/px), that will provide high-resolution images of about 20% of the surface, and the Visible and near-Infrared Hyperspectral Imaging channel (VIHI), with high spectral resolution (6 nm at finest) in the 400-2000 nm range and spatial resolution reaching 120 m/px, it will provide global coverage at 480 m/px with the spectral information, assuming the first orbit around Mercury with periherm at 480 km from the surface. SIMBIO-SYS will provide high-resolution images, the Digital Terrain Model of the entire surface, and the surface composition using a wide spectral range, as for instance detecting sulphides or material derived by sulphur and carbon oxidation, at resolutions and coverage higher than the MESSENGER mission with a full co-alignment of the three channels. All the data that will be acquired will allow to cover a wide range of scientific objectives, from the surface processes and cartography up to the internal structure, contributing to the libration experiment, and the surface-exosphere interaction. The global 3D and spectral mapping will allow to study the morphology and the composition of any surface feature. In this work, we describe the on-ground calibrations and the results obtained, providing an important overview of the instrument performances. The calibrations have been performed at channel and at system levels, utilizing specific setup in most of the cases realized for SIMBIO-SYS. In the case of the stereo camera (STC), it has been necessary to have a validation of the new stereo concept adopted, based on the push-frame. This work describes also the results of the Near-Earth Commissioning Phase performed few weeks after the Launch (20 October 2018). According to the calibration results and the first commissioning the three channels are working very well.Peer reviewe

    Antitumoral materials with regenerative function obtained using a layer-by-layer technique

    No full text
    Denisa Ficai,1 Maria Sonmez,1,2 Madalina Georgiana Albu,2 Dan Eduard Mihaiescu,1 Anton Ficai,1 Coralia Bleotu3 1Faculty of Applied Chemistry and Material Science, Politehnica University of Bucharest, 2Leather and Footwear Research Institute, National Research and Development Institute for Textiles and Leather, 3Stefan S Nicolau Institute of Virology, Romanian Academy, Bucharest, Romania Abstract: A layer-by layer technique was successfully used to obtain collagen/hydroxyapatite-magnetite-cisplatin (COLL/HAn-Fe3O4-CisPt, n=1–7) composite materials with a variable content of hydroxyapatite intended for use in the treatment of bone cancer. The main advantages of this system are the possibility of controlling the rate of delivery of cytostatic agents, the presence of collagen and hydroxyapatite to ensure more rapid healing of the injured bone tissue, and the potential for magnetite to be a passive antitumoral component that can be activated when an appropriate external electromagnetic field is applied. In vitro cytotoxicity assays performed on the COLL/HAn-Fe3O4-CisPt materials obtained using a layer-by layer method confirmed their antitumoral activity. Samples with a higher content of hydroxyapatite had more antitumoral activity because of their better absorption of cisplatin and consequently a higher amount of cisplatin being present in the matrices. Keywords: multifunctional materials, antitumoral activity, scaffold, bone graft

    Molecular mechanism and targets of the antimicrobial activity of metal nanoparticles

    No full text
    The emergence of multi-resistant bacteria to drugs is recognized as a major cause of the increasing number of deaths in hospitals. Killing these bacteria require multiple expensive drugs that can have side effects. Metal nanoparticles may provide a new strategy to combat them. Due the antimicrobial and antiviral properties, nanoparticles (NPs) have outstanding biological properties that can be handled properly for desired applications. This review presents antibacterial and antiviral activity of metal NPs, including the molecular mechanisms by which NPs annihilate multidrug-resistant bacteria. © 2015 Bentham Science Publishers

    Drug delivery systems for dental applications

    No full text
    Inevitable caries formation and other tooth related diseases are one of the most common factors affecting human quality of life, as they are often followed by loss of teeth. Significant research efforts have been devoted to establishing control and preventive solutions. It is clearly known that fluoride is one of the promising chemical substances with anti-carious activity. The elimination of the microbial infection, especially the multispecies infections induced by aerobic and anaerobic bacteria, is a current challenge of the endodontic therapy. Using antibiotics or other active agents (from ions, nanoparticles to natural products) loaded in specific drug carrier systems seems to be ideal approach in treating and controlling dental diseases, even if, the drug delivery systems used in dental applications are less established comparing with other tissues/organs. Based on the importance of biomedical drug delivery systems the present study aims to give a brief review on the improvements of drug delivery systems for dental applications. © Springer Japan 2016.Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si InovariiThe work has been funded by PN-II-PT-PCCA-2013-4-0891 project "Innovative dental products with multiple applications - LavEndo" funded by UEFISCDI

    Nanotechnology in dentistry

    No full text
    Nanotechnology has tremendous potential to revolutionize dentistry as a whole and can also introduce significant benefits to human society by improving health and presenting better use of natural resources. Nanomaterials and nanoparticles are likely to be cornerstones of innovative nanodental applications. It is believed that nanodentistry will improve the human quality of life for the twenty-first century. © 2016 Elsevier Inc. All rights reserved.Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si InovariiThe work has been funded by PN-II-PT-PCCA-2013-4-0891 project “Innovative dental products with multiple applications–LavEndo” funded by UEFISCDI
    • 

    corecore