76 research outputs found
Kinetic Release Studies of Antibiotic Patches for Local Transdermal Delivery.
This study investigates the usage of electrohydrodynamic (EHD)-3D printing for the fabrication of bacterial cellulose (BC)/polycaprolactone (PCL) patches loaded with different antibiotics (amoxicillin (AMX), ampicillin (AMP), and kanamycin (KAN)) for transdermal delivery. The composite patches demonstrated facilitated drug loading and encapsulation efficiency of drugs along with extended drug release profiles. Release curves were also subjected to model fitting, and it was found that drug release was optimally adapted to the Higuchi square root model for each drug. They performed a time-dependent and diffusion-controlled release from the patches and followed Fick's diffusion law by the Korsmeyer-Peppas energy law equation. Moreover, produced patches demonstrated excellent antimicrobial activity against Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) strains, so they could be helpful in the treatment of chronic infectious lesions during wound closures. As different tests have confirmed, various types of antibiotics could be loaded and successfully released regardless of their types from produced BC/PCL patches. This study could breathe life into the production of antibiotic patches for local transdermal applications in wound dressing studies and improve the quality of life of patients
Hybrid nanostructured coating for increased resistance of prosthetic devices to staphylococcal colonization
The measurement of the noise-equivalent spectral radiance of SIMBIO-SYS/VIHI spectrometer
We report about the measurement of the Noise- Equivalent Spectral Radiance (NESR) of the VIHI imaging spectromter aboard ESA's Bepi Colombo mission to Mercury. The knowledge of the NESR allows to determine the capability of an optical detector to measure faint signals. A description of the setup used to determine the NESR during the prelaunch calibration campaign is given. The processing of the data col- lected at various operative temperatures and integration times is described. The sensitivity study of the NESR has been performed at the expected detector's temperatures and integration times with the goal to determine the minimum spectral radiance at which VIHI is sensitive during the different observation phases of the mission. A simulation of the expected Signal-to-Noise Ratio (SNR) of VIHI during the different orbital phases is provided
Radiometric calibration of the SIMBIO-SYS STereo imaging Channel
The STereo imaging Channel (STC) is a double wide-angle camera developed to be one of the channels of the SIMBIOSYS instrument onboard of the ESA BepiColombo mission to Mercury. STC main goal is to map in 3D the whole Mercury surface. The geometric and radiometric responses of the STC Proto Flight model have been characterized on-ground during the calibration campaign. The derived responses will be used to calibrate the STC images that will be acquired in flight.
The aim is to determine the functions linking the detected signal in digital number to the radiance of the target surface in physical units. The result of the radiometric calibration consists in the determination of well-defined quantities: (1) the dark current as a function of the integration time and of the detector temperature, settled and controlled to be stable at 268 K; (2) the read out noise, which is associated with the noise signal of the read-out electronic; and (3) the fixed pattern noise, which is generated by the different response of each pixel. Once these quantities are known, the photon response and the photoresponse non-uniformity, which represents the variation of the photon responsivity of a pixel in an array, can be derived. The final result of the radiometric calibration is the relation between the radiance of an accurately known and uniform source,
and the digital numbers measured by the detector
The JANUS (Jovis Amorum ac Natorum Undique Scrutator) VIS-NIR Multi-Band Imager for the JUICE Mission
The JANUS instrument (Jovis, Amorum ac Natorum Undique Scrutator) aboard the JUpiter ICy moons Explorer (JUICE) is a multispectral camera enabling imaging in the 380-1080 nm wavelength range. The performance and capability of JANUS fulfils all requirements for imaging the variety of different targets JUICE will investigate, including the icy satellites, Io, small inner and irregular moons, the rings and Jupiter itself. JUICE’s orbital trajectory in the Jupiter system will allow icy Galilean satellites observations from afar to closest approaches of a few hundred kilometres, resulting in spatial sampling from km/pixel down to 3 m/pixel respectively. All other targets will be observed from a distance > several 105 km, i.e. spatial sampling above several km/pixel. Thirteen bandpass filters provide good spectral coverage with bandwidths from several tens of nm down to 10 nm. The spectral resolution of JANUS will provide unprecedented characterization of endogenic and exogenic geological processes that shaped the icy satellites surfaces, enable monitoring of volcanic activity on Io, and enable investigation of the physical and dynamical properties of small satellites and rings. The dynamics of Jupiter’s atmosphere will be characterised over more than three years at different altitudes thanks to the ad-hoc selected filters. This paper briefly summarizes the science objectives of JANUS and describes in some detail the instrument architecture, its design, performances and observational capabilities. Although specific aspects, like e.g. data calibration, will be covered in future papers, this work is aimed at offering a general reference to the science enabled by JANUS and the design and capabilities of the instrument
The JANUS (Jovis Amorum ac Natorum Undique Scrutator) VIS-NIR Multi-Band Imager for the JUICE Mission
The JANUS instrument (Jovis, Amorum ac Natorum Undique Scrutator) aboard the JUpiter ICy moons Explorer (JUICE) is a multispectral camera enabling imaging in the 380-1080 nm wavelength range. The performance and capability of JANUS fulfils all requirements for imaging the variety of different targets JUICE will investigate, including the icy satellites, Io, small inner and irregular moons, the rings and Jupiter itself. JUICE’s orbital trajectory in the Jupiter system will allow icy Galilean satellites observations from afar to closest approaches of a few hundred kilometres, resulting in spatial sampling from km/pixel down to 3 m/pixel respectively. All other targets will be observed from a distance > several 105 km, i.e. spatial sampling above several km/pixel. Thirteen bandpass filters provide good spectral coverage with bandwidths from several tens of nm down to 10 nm. The spectral resolution of JANUS will provide unprecedented characterization of endogenic and exogenic geological processes that shaped the icy satellites surfaces, enable monitoring of volcanic activity on Io, and enable investigation of the physical and dynamical properties of small satellites and rings. The dynamics of Jupiter’s atmosphere will be characterised over more than three years at different altitudes thanks to the ad-hoc selected filters. This paper briefly summarizes the science objectives of JANUS and describes in some detail the instrument architecture, its design, performances and observational capabilities. Although specific aspects, like e.g. data calibration, will be covered in future papers, this work is aimed at offering a general reference to the science enabled by JANUS and the design and capabilities of the instrument
SIMBIO-SYS : Scientific Cameras and Spectrometer for the BepiColombo Mission
The SIMBIO-SYS (Spectrometer and Imaging for MPO BepiColombo Integrated Observatory SYStem) is a complex instrument suite part of the scientific payload of the Mercury Planetary Orbiter for the BepiColombo mission, the last of the cornerstone missions of the European Space Agency (ESA) Horizon + science program. The SIMBIO-SYS instrument will provide all the science imaging capability of the BepiColombo MPO spacecraft. It consists of three channels: the STereo imaging Channel (STC), with a broad spectral band in the 400-950 nm range and medium spatial resolution (at best 58 m/px), that will provide Digital Terrain Model of the entire surface of the planet with an accuracy better than 80 m; the High Resolution Imaging Channel (HRIC), with broad spectral bands in the 400-900 nm range and high spatial resolution (at best 6 m/px), that will provide high-resolution images of about 20% of the surface, and the Visible and near-Infrared Hyperspectral Imaging channel (VIHI), with high spectral resolution (6 nm at finest) in the 400-2000 nm range and spatial resolution reaching 120 m/px, it will provide global coverage at 480 m/px with the spectral information, assuming the first orbit around Mercury with periherm at 480 km from the surface. SIMBIO-SYS will provide high-resolution images, the Digital Terrain Model of the entire surface, and the surface composition using a wide spectral range, as for instance detecting sulphides or material derived by sulphur and carbon oxidation, at resolutions and coverage higher than the MESSENGER mission with a full co-alignment of the three channels. All the data that will be acquired will allow to cover a wide range of scientific objectives, from the surface processes and cartography up to the internal structure, contributing to the libration experiment, and the surface-exosphere interaction. The global 3D and spectral mapping will allow to study the morphology and the composition of any surface feature. In this work, we describe the on-ground calibrations and the results obtained, providing an important overview of the instrument performances. The calibrations have been performed at channel and at system levels, utilizing specific setup in most of the cases realized for SIMBIO-SYS. In the case of the stereo camera (STC), it has been necessary to have a validation of the new stereo concept adopted, based on the push-frame. This work describes also the results of the Near-Earth Commissioning Phase performed few weeks after the Launch (20 October 2018). According to the calibration results and the first commissioning the three channels are working very well.Peer reviewe
SIMBIO-SYS: Scientific Cameras and Spectrometer for the BepiColombo Mission
The SIMBIO-SYS (Spectrometer and Imaging for MPO BepiColombo Integrated Observatory SYStem) is a complex instrument suite part of the scientific payload of the Mercury Planetary Orbiter for the BepiColombo mission, the last of the cornerstone missions of the European Space Agency (ESA) Horizon + science program
- …
