5,204 research outputs found

    Biology, fisheries and culture of tropical groupers and snappers

    Get PDF
    Groupers and snappers are important fishery resources of the tropics and subtropics, where their high values have caused most of their stocks to be heavily exploited, some even to the point of collapse. Trends towards heavy demand and decreasing natural supply, which are accelerating in several parts of the world, prompted various mariculture ventures. Focused research on biology and the population dynamics of groupers and snappers, and on their reproduction and growth under controlled condition will remain essential for dealing with the questions on how to better manage their fisheries. This volume of papers presents important scientific findings and views on these two important groups of fish.Percoid fisheries, Fishery biology, Fishery management, Conferences

    Conduction Channels of One-Atom Zinc Contacts

    Get PDF
    We have determined the transmission coefficients of atomic-sized Zn contacts using a new type of breakjunction which contains a whisker as a central bridge. We find that in the last conductance plateau the transport is unexpectedly dominated by a well-transmitting single conduction channel. We explain the experimental findings with the help of a tight-binding model which shows that in an one-atom Zn contact the current proceeds through the 4s and 4p orbitals of the central atom.Comment: revtex4, 5 pages, 5 figure

    Electronic and atomic shell structure in aluminum nanowires

    Get PDF
    We report experiments on aluminum nanowires in ultra-high vacuum at room temperature that reveal a periodic spectrum of exceptionally stable structures. Two "magic" series of stable structures are observed: At low conductance, the formation of stable nanowires is governed by electronic shell effects whereas for larger contacts atomic packing dominates. The crossover between the two regimes is found to be smooth. A detailed comparison of the experimental results to a theoretical stability analysis indicates that while the main features of the observed electron-shell structure are similar to those of alkali and noble metals, a sequence of extremely stable wires plays a unique role in Aluminum. This series appears isolated in conductance histograms and can be attributed to "superdeformed" non-axisymmetric nanowires.Comment: 15 pages, 9 figure

    Highly conductive molecular junctions based on direct binding of benzene to platinum electrodes

    Get PDF
    Highly conductive molecular junctions were formed by direct binding of benzene molecules between two Pt electrodes. Measurements of conductance, isotopic shift in inelastic spectroscopy and shot noise compared with calculations provide indications for a stable molecular junction where the benzene molecule is preserved intact and bonded to the Pt leads via carbon atoms. The junction has a conductance comparable to that for metallic atomic junctions (around 0.1-1 Go), where the conductance and the number of transmission channels are controlled by the molecule's orientation at different inter-electrode distances.Comment: 4 pages, 4 figure

    Ab-initio study of the thermopower of biphenyl-based single-molecule junctions

    Full text link
    Employing ab-initio electronic structure calculations combined with the non-equilibrium Green's function technique, we study the dependence of the thermopower Q on the conformation in biphenyl-based single-molecule junctions. For the series of experimentally available biphenyl molecules, alkyl side chains allow us to gradually adjust the torsion angle \phi\ between the two phenyl rings from 0 to 90{\deg} and to control in this way the degree of \pi-electron conjugation. Studying different anchoring groups and binding positions, our theory predicts that the absolute values of the thermopower decrease slightly towards larger torsion angles, following an a+b*cos^{2}\phi\ dependence. The anchoring group determines the sign of Q and a,b, simultaneously. Sulfur and amine groups give rise to Q,a,b>0, while for cyano Q,a,b<0. The different binding positions can lead to substantial variations of the thermopower mostly due to changes in the alignment of the frontier molecular orbital levels and the Fermi energy. We explain our ab-initio results in terms of a \pi-orbital tight-binding model and a minimal two-level model, which describes the pair of hybridizing frontier orbital states on the two phenyl rings. The variations of the thermopower with \phi\ seem to be within experimental resolution.Comment: 8 pages, 4 figues, 3 table

    Tilt-angle landscapes and temperature dependence of the conductance in biphenyl-dithiol single-molecule junctions

    Full text link
    Using a density-functional-based transport method we study the conduction properties of several biphenyl-derived dithiol (BPDDT) molecules wired to gold electrodes. The BPDDT molecules differ in their side groups, which control the degree of conjugation of the pi-electron system. We have analyzed the dependence of the low-bias zero-temperature conductance on the tilt angle phi between the two phenyl ring units, and find that it follows closely a cos^2(phi) law, as expected from an effective pi-orbital coupling model. We show that the tilting of the phenyl rings results in a decrease of the zero-temperature conductance by roughly two orders of magnitude, when going from a planar conformation to a configuration in which the rings are perpendicular. In addition we demonstrate that the side groups, apart from determining phi, have no influence on the conductance. All this is in agreement with the recent experiment by Venkataraman et al. [Nature 442, 904 (2006)]. Finally, we study the temperature dependence of both the conductance and its fluctuations and find qualitative differences between the examined molecules. In this analysis we consider two contributions to the temperature behavior, one coming from the Fermi functions and the other one from a thermal average over different contact configurations. We illustrate that the fluctuations of the conductance due to temperature-induced changes in the geometric structure of the molecule can be reduced by an appropriate design.Comment: 9 pages, 6 figures; submitted to Phys. Rev.

    Improving Shepherd's Length Composition Analysis (SLCA) method for growth parameter estimations

    Get PDF
    Shepherd's &quot;weekly parametric&quot; method for estimating the parameter L sub( infinity ) and K of the von Bertalanffy growth function from length-frequency data often fails to converge, and usually overestimates K. It is shown that this is due to overcounting of the frequencies associated with large, slow growing fish, and that both of these problems can be completely overcome by a simple change in the way the scoring function is formulated

    Improved setup for producing slow beams of cold molecules using a rotating nozzle

    Full text link
    Intense beams of cold and slow molecules are produced by supersonic expansion out of a rapidly rotating nozzle, as first demonstrated by Gupta and Herschbach. An improved setup is presented that allows to accelerate or decelerate cold atomic and molecular beams by up to 500 m/s. Technical improvements are discussed and beam parameters are characterized by detailed analysis of time of flight density distributions. The possibility of combining this beam source with electrostatic fields for guiding polar molecules is demonstrated

    Cluster-based density-functional approach to quantum transport through molecular and atomic contacts

    Get PDF
    We present a cluster-based density-functional approach to model charge transport through molecular and atomic contacts. The electronic structure of the contacts is determined in the framework of density functional theory, and the parameters needed to describe transport are extracted from finite clusters. A similar procedure, restricted to nearest-neighbor interactions in the electrodes, has been presented by Damle et al. [Chem. Phys. 281, 171 (2002)]. Here, we show how to systematically improve the description of the electrodes by extracting bulk parameters from sufficiently large metal clusters. In this way we avoid problems arising from the use of nonorthogonal basis functions. For demonstration we apply our method to electron transport through Au contacts with various atomic-chain configurations and to a single-atom contact of Al.Comment: 18 pages, 13 figure
    • …
    corecore