Using a density-functional-based transport method we study the conduction
properties of several biphenyl-derived dithiol (BPDDT) molecules wired to gold
electrodes. The BPDDT molecules differ in their side groups, which control the
degree of conjugation of the pi-electron system. We have analyzed the
dependence of the low-bias zero-temperature conductance on the tilt angle phi
between the two phenyl ring units, and find that it follows closely a
cos^2(phi) law, as expected from an effective pi-orbital coupling model. We
show that the tilting of the phenyl rings results in a decrease of the
zero-temperature conductance by roughly two orders of magnitude, when going
from a planar conformation to a configuration in which the rings are
perpendicular. In addition we demonstrate that the side groups, apart from
determining phi, have no influence on the conductance. All this is in agreement
with the recent experiment by Venkataraman et al. [Nature 442, 904 (2006)].
Finally, we study the temperature dependence of both the conductance and its
fluctuations and find qualitative differences between the examined molecules.
In this analysis we consider two contributions to the temperature behavior, one
coming from the Fermi functions and the other one from a thermal average over
different contact configurations. We illustrate that the fluctuations of the
conductance due to temperature-induced changes in the geometric structure of
the molecule can be reduced by an appropriate design.Comment: 9 pages, 6 figures; submitted to Phys. Rev.