653 research outputs found
JunB Inhibits ER Stress and Apoptosis in Pancreatic Beta Cells
Cytokines contribute to pancreatic β-cell apoptosis in type 1 diabetes (T1D) by modulation of β-cell gene expression networks. The transcription factor Activator Protein-1 (AP-1) is a key regulator of inflammation and apoptosis. We presently evaluated the function of the AP-1 subunit JunB in cytokine-mediated β-cell dysfunction and death. The cytokines IL-1β+IFN-γ induced an early and transitory upregulation of JunB by NF-κB activation. Knockdown of JunB by RNA interference increased cytokine-mediated expression of inducible nitric oxide synthase (iNOS) and endoplasmic reticulum (ER) stress markers, leading to increased apoptosis in an insulin-producing cell line (INS-1E) and in purified rat primary β-cells. JunB knockdown β-cells and junB−/− fibroblasts were also more sensitive to the chemical ER stressor cyclopiazonic acid (CPA). Conversely, adenoviral-mediated overexpression of JunB diminished iNOS and ER markers expression and protected β-cells from cytokine-induced cell death. These findings demonstrate a novel and unexpected role for JunB as a regulator of defense mechanisms against cytokine- and ER stress-mediated apoptosis
PTPN2, a Candidate Gene for Type 1 Diabetes, Modulates Interferon-γ–Induced Pancreatic β-Cell Apoptosis
OBJECTIVE:
The pathogenesis of type 1 diabetes has a strong genetic component. Genome-wide association scans recently identified novel susceptibility genes including the phosphatases PTPN22 and PTPN2. We hypothesized that PTPN2 plays a direct role in beta-cell demise and assessed PTPN2 expression in human islets and rat primary and clonal beta-cells, besides evaluating its role in cytokine-induced signaling and beta-cell apoptosis.
RESEARCH DESIGN AND METHODS:
PTPN2 mRNA and protein expression was evaluated by real-time PCR and Western blot. Small interfering (si)RNAs were used to inhibit the expression of PTPN2 and downstream STAT1 in beta-cells, allowing the assessment of cell death after cytokine treatment.
RESULTS:
PTPN2 mRNA and protein are expressed in human islets and rat beta-cells and upregulated by cytokines. Transfection with PTPN2 siRNAs inhibited basal- and cytokine-induced PTPN2 expression in rat beta-cells and dispersed human islets cells. Decreased PTPN2 expression exacerbated interleukin (IL)-1beta + interferon (IFN)-gamma-induced beta-cell apoptosis and turned IFN-gamma alone into a proapoptotic signal. Inhibition of PTPN2 amplified IFN-gamma-induced STAT1 phosphorylation, whereas double knockdown of both PTPN2 and STAT1 protected beta-cells against cytokine-induced apoptosis, suggesting that STAT1 hyperactivation is responsible for the aggravation of cytokine-induced beta-cell death in PTPN2-deficient cells.
CONCLUSIONS:
We identified a functional role for the type 1 diabetes candidate gene PTPN2 in modulating IFN-gamma signal transduction at the beta-cell level. PTPN2 regulates cytokine-induced apoptosis and may thereby contribute to the pathogenesis of type 1 diabetes
Role of Interleukin 17 in arthritis chronicity through survival of synoviocytes via regulation of synoviolin expression
Background:
The use of TNF inhibitors has been a major progress in the treatment of chronic inflammation. However, not all patients respond. In addition, response will be often lost when treatment is stopped. These clinical aspects indicate that other cytokines might be involved and we focus here on the role of IL-17. In addition, the chronic nature of joint inflammation may contribute to reduced response and enhanced chronicity. Therefore we studied the capacity of IL-17 to regulate synoviolin, an E3 ubiquitin ligase implicated in synovial hyperplasia in human rheumatoid arthritis (RA) FLS and in chronic reactivated streptococcal cell wall (SCW)-induced arthritis.<p></p>
Methodology/Principal Findings:
Chronic reactivated SCW-induced arthritis was examined in IL-17R deficient and wild-type mice. Synoviolin expression was analysed by real-time RT-PCR, Western Blot or immunostaining in RA FLS and tissue, and p53 assessed by Western Blot. Apoptosis was detected by annexin V/propidium iodide staining, SS DNA apoptosis ELISA kit or TUNEL staining and proliferation by PCNA staining. IL-17 receptor A (IL-17RA), IL-17 receptor C (IL-17-RC) or synoviolin inhibition were achieved by small interfering RNA (siRNA) or neutralizing antibodies. IL-17 induced sustained synoviolin expression in RA FLS. Sodium nitroprusside (SNP)-induced RA FLS apoptosis was associated with reduced synoviolin expression and was rescued by IL-17 treatment with a corresponding increase in synoviolin expression. IL-17RC or IL-17RA RNA interference increased SNP-induced apoptosis, and decreased IL-17-induced synoviolin. IL-17 rescued RA FLS from apoptosis induced by synoviolin knockdown. IL-17 and TNF had additive effects on synoviolin expression and protection against apoptosis induced by synoviolin knowndown. In IL-17R deficient mice, a decrease in arthritis severity was characterized by increased synovial apoptosis, reduced proliferation and a marked reduction in synoviolin expression. A distinct absence of synoviolin expressing germinal centres in IL-17R deficient mice contrasted with synoviolin positive B cells and Th17 cells in synovial germinal centre-like structures.<p></p>
Conclusion/Significance:
IL-17 induction of synoviolin may contribute at least in part to RA chronicity by prolonging the survival of RA FLS and immune cells in germinal centre reactions. These results extend the role of IL-17 to synovial hyperplasia.<p></p>
Inhibition of Y1 receptor signaling improves islet transplant outcome
Failure to secrete sufficient quantities of insulin is a pathological feature of type-1 and type-2 diabetes, and also reduces the success of islet cell transplantation. Here we demonstrate that Y1 receptor signaling inhibits insulin release in β-cells, and show that this can be pharmacologically exploited to boost insulin secretion. Transplanting islets with Y1 receptor deficiency accelerates the normalization of hyperglycemia in chemically induced diabetic recipient mice, which can also be achieved by short-term pharmacological blockade of Y1 receptors in transplanted mouse and human islets. Furthermore, treatment of non-obese diabetic mice with a Y1 receptor antagonist delays the onset of diabetes. Mechanistically, Y1 receptor signaling inhibits the production of cAMP in islets, which via CREB mediated pathways results in the down-regulation of several key enzymes in glycolysis and ATP production. Thus, manipulating Y1 receptor signaling in β-cells offers a unique therapeutic opportunity for correcting insulin deficiency as it occurs in the pathological state of type-1 diabetes as well as during islet transplantation.Islet transplantation is considered one of the potential treatments for T1DM but limited islet survival and their impaired function pose limitations to this approach. Here Loh et al. show that the Y1 receptor is expressed in β- cells and inhibition of its signalling, both genetic and pharmacological, improves mouse and human islet function.info:eu-repo/semantics/publishe
An integrated multi-omics approach identifies the landscape of interferon-α-mediated responses of human pancreatic beta cells
Interferon-α (IFNα), a type I interferon, is expressed in the islets of type 1 diabetic individuals, and its expression and signaling are regulated by T1D genetic risk variants and viral infections associated with T1D. We presently characterize human beta cell responses to IFNα by combining ATAC-seq, RNA-seq and proteomics assays. The initial response to IFNα is characterized by chromatin remodeling, followed by changes in transcriptional and translational regulation. IFNα induces changes in alternative splicing (AS) and first exon usage, increasing the diversity of transcripts expressed by the beta cells. This, combined with changes observed on protein modification/degradation, ER stress and MHC class I, may expand antigens presented by beta cells to the immune system. Beta cells also up-regulate the checkpoint proteins PDL1 and HLA-E that may exert a protective role against the autoimmune assault. Data mining of the present multi-omics analysis identifies two compound classes that antagonize IFNα effects on human beta cells.This article is freely available via Open Access. Click on the Publisher URL to access it via the publisher's site.P30 DK097512/DK/NIDDK NIH HHS/United States
UC4 DK104166/DK/NIDDK NIH HHS/United States
MR/P010695/1/MRC_/Medical Research Council/United Kingdompublished version, accepted version, submitted versio
A functional genomic approach to identify reference genes for human pancreatic beta cell real-time quantitative RT-PCR analysis
Exposure of human pancreatic beta cells to pro-inflammatory cytokines or metabolic stressors is used to model events related to type 1 and type 2 diabetes, respectively. Quantitative real-time PCR is commonly used to quantify changes in gene expression. The selection of the most adequate reference gene(s) for gene expression normalization is an important pre-requisite to obtain accurate and reliable results. There are no universally applicable reference genes, and the human beta cell expression of commonly used reference genes can be altered by different stressors. Here we aimed to identify the most stably expressed genes in human beta cells to normalize quantitative real-time PCR gene expression. We used comprehensive RNA-sequencing data from the human pancreatic beta cell line EndoC-βH1, human islets exposed to cytokines or the free fatty acid palmitate in order to identify the most stably expressed genes. Genes were filtered based on their level of significance (adjusted P-value >0.05), fold-change (|fold-change| <1.5) and a coefficient of variation <10%. Candidate reference genes were validated by quantitative real-time PCR in independent samples. We identified a total of 264 genes stably expressed in EndoC-βH1 cells and human islets following cytokines–or palmitate-induced stress, displaying a low coefficient of variation. Validation by quantitative real-time PCR of the top five genes ARF1, CWC15, RAB7A, SIAH1 and VAPA corroborated their expression stability under most of the tested conditions. Further validation in independent samples indicated that the geometric mean of ACTB and VAPA expression can be used as a reliable normalizing factor in human beta cells
Effects of Imatinib Mesylate (Gleevec) on Human Islet NF-kappaB Activation and Chemokine Production In Vitro
Imatinib Mesylate (Gleevec) is a drug that potently counteracts diabetes both in humans and in animal models for human diabetes. We have previously reported that this compound in human pancreatic islets stimulates NF-κB signaling and islet cell survival. The aim of this study was to investigate control of NF-κB post-translational modifications exerted by Imatinib and whether any such effects are associated with altered islet gene expression and chemokine production in vitro.Human islets were either left untreated or treated with Imatinib for different timepoints. IκB-α and NF-κB p65 phosphorylation and methylation were assessed by immunoblot analysis. Islet gene expression was assessed using a commercial Pathway Finder microarray kit and RT-PCR. Islet chemokine production was determined by flow cytometric bead array analysis.Human islet IκB-α and Ser276-p65 phosphorylation were increased by a 20 minute Imatinib exposure. Methylation of p65 at position Lys221 was increased after 60 min of Imatinib exposure and persisted for 3 hours. Microarray analysis of islets exposed to Imatinib for 4 hours revealed increased expression of the inflammatory genes IL-4R, TCF5, DR5, I-TRAF, I-CAM, HSP27 and IL-8. The islet release of IL-8 was augmented in islets cultured over night in the presence of Imatinib. Following 30 hours of Imatinib exposure, the cytokine-induced IκB-α and STAT1 phosphorylation was abolished and diminished, respectively. The cytokine-induced release of the chemokines MIG and IP10 was lower in islets exposed to Imatinib for 30 hours.Imatinib by itself promotes a modest activation of NF-κB. However, a prolonged exposure of human islets to Imatinib is associated with a dampened response to cytokines. It is possible that Imatinib induces NF-κB preconditioning of islet cells leading to lowered cytokine sensitivity and a mitigated islet inflammation
- …