310 research outputs found
Correlation and Dimerization Effects on the Physical Behavior of the Charge Transfer Salts : A DMRG Study of the Quarter-Filling t-J Model
The present work studies the quasi one-dimensional -based
compounds within a correlated model. More specifically, we focus our attention
on the composed influence of the electronic dimerization-factor and the
repulsion, on the transport properties and the localization of the electronic
density in the ground-state. Those properties are studied through the
computation of the charge gaps (difference between the ionization potential and
the electro-affinity: IP-EA) and the long- and short-bond orders of an infinite
quarter-filled chain within a model. The comparison between the
computed gaps and the experimental activation energy of the semiconductor
allows us to estimate the on-site electronic
repulsion of the molecule to .Comment: 13 pages, 4 figures, RevTe
Li4NiTeO6 as a positive electrode for Li-ion batteries
Layered Li4NiTeO6 was shown to reversibly release/uptake B2 lithium
ions per formula unit with fair capacity retention upon long cycling. The
Li electrochemical reactivitymechanism differs from that of Li2MO3 and
is rooted in the Ni4+/Ni2+ redox couple, that takes place at a higher
potential than conventional LiNi1�xMnxO2 compounds.We explain this
in terms of inductive effect due to Te6+ ions (or the TeO6
6� moiet
Metal-insulator transition in Ca_{1-x}Li_xPd_3O_4
Metal-insulator transition in Ca_{1-x}Li_xPd_3O_4 has been studied through
charge transport measurements. The resistivity, the Seebeck coefficient, and
the Hall coefficient are consistently explained in terms of a simple one-band
picture, where a hole with a moderately enhanced mass is itinerant
three-dimensionally. Contrary to the theoretical prediction [Phys. Rev. B62,
13426 (2000)], CaPd_3O_4 is unlikely to be an excitonic insulator, and holds a
finite carrier concentration down to 4.2 K. Thus the metal-insulator transition
in this system is basically driven by localization effects.Comment: RevTeX4 format, 4 pages, 5 eps figure
Widespread Wolbachia infection in terrestrial isopods and other crustaceans
Wolbachia bacteria are obligate intracellular alpha-Proteobacteria of arthropods and nematodes. Although widespread among isopod crustaceans, they have seldom been found in non-isopod crustacean species. Here, we report Wolbachia infection in fourteen new crustacean species. Our results extend the range of Wolbachia infections in terrestrial isopods and amphipods (class Malacostraca). We report the occurrence of two different Wolbachia strains in two host species (a terrestrial isopod and an amphipod). Moreover, the discovery of Wolbachia in the goose barnacle Lepas anatifera (subclass Thecostraca) establishes Wolbachia infection in class Maxillopoda. The new bacterial strains are closely related to B-supergroup Wolbachia strains previously reported from crustacean hosts. Our results suggest that Wolbachia infection may be much more widespread in crustaceans than previously thought. The presence of related Wolbachia strains in highly divergent crustacean hosts suggests that Wolbachia endosymbionts can naturally adapt to a wide range of crustacean hosts. Given the ability of isopod Wolbachia strains to induce feminization of genetic males or cytoplasmic incompatibility, we speculate that manipulation of crustacean-borne Wolbachia bacteria might represent potential tools for controlling crustacean species of commercial interest and crustacean or insect disease vectors.This research was funded by a European Research Council Starting Grant (FP7/2007-2013 grant 260729 EndoSexDet) to RC and a Comité Mixte de Coopération Universitaire Franco-Tunisien grant to DB and FCC
Large Thermoelectric Power Factor in TiS2 Crystal with Nearly Stoichiometric Composition
A TiS crystal with a layered structure was found to have a large
thermoelectric power factor.The in-plane power factor at 300 K is
37.1~W/Kcm with resistivity () of 1.7 mcm and
thermopower () of -251~V/K, and this value is comparable to that of the
best thermoelectric material, BiTe alloy. The electrical
resistivity shows both metallic and highly anisotropic behaviors, suggesting
that the electronic structure of this TiS crystal has a
quasi-two-dimensional nature. The large thermoelectric response can be ascribed
to the large density of state just above the Fermi energy and inter-valley
scattering. In spite of the large power factor, the figure of merit, of
TiS is 0.16 at 300 K, because of relatively large thermal conductivity,
68~mW/Kcm. However, most of this value comes from reducible lattice
contribution. Thus, can be improved by reducing lattice thermal
conductivity, e.g., by introducing a rattling unit into the inter-layer sites.Comment: 11 pages, 4 figures, to be published in Physical Review
Emergence of Irrationality: Magnetization Plateaux in Modulated Hubbard Chains
Hubbard chains with periodically modulated coupling constants in a magnetic field exhibit gaps at zero temperature in their magnetic and charge excitations in a variety of situations. In addition to fully gapped situations (plateau in the magnetization curve and charge gap), we have shown [cond-mat/9908398] that plateaux also appear in the presence of massless modes, leading to a plateau with a magnetization m whose value depends continuously on the filling n. Here we detail and extend the arguments leading to such doping-dependent magnetization plateaux. First we analyze the low-lying excitations using Abelian bosonization. We compute the susceptibility and show that due to the constraint of fixed n, it vanishes at low temperatures (thus leading to a magnetization plateau) even in the presence of one massless mode. Next we study correlation functions and show that one component of the superconducting order parameter develops quasi-long-range order on a doping-dependent magnetization plateau. We then use perturbation theory in the on-site repulsion U to compute the width of these plateaux up to first order in U. Finally, we compute groundstate phase diagrams and correlation functions by Lanczos diagonalization of finite clusters, confirming the presence of doping-dependent plateaux and their special properties
Evaluation of Cage Designs and Feeding Regimes for Honey Bee (Hymenoptera: Apidae) Laboratory Experiments
The aim of this study was to improve cage systems for maintaining adult honey bee (Apis mellifera L.) workers under in vitro laboratory conditions. To achieve this goal, we experimentally evaluated the impact of different cages, developed by scientists of the international research network COLOSS (Prevention of honey bee COlony LOSSes), on the physiology and survival of honey bees. We identified three cages that promoted good survival of honey bees. The bees from cages that exhibited greater survival had relatively lower titers of deformed wing virus, suggesting that deformed wing virus is a significant marker reflecting stress level and health status of the host. We also determined that a leak- and drip-proof feeder was an integral part of a cage system and a feeder modified from a 20-ml plastic syringe displayed the best result in providing steady food supply to bees. Finally, we also demonstrated that the addition of protein to the bees' diet could significantly increase the level of vitellogenin gene expression and improve bees' survival. This international collaborative study represents a critical step toward improvement of cage designs and feeding regimes for honey bee laboratory experiment
Stability, Entrapment and Variant Formation of Salmonella Genomic Island 1
<div><h3>Background</h3><p>The <em>Salmonella</em> genomic island 1 (SGI1) is a 42.4 kb integrative mobilizable element containing several antibiotic resistance determinants embedded in a complex integron segment In104. The numerous SGI1 variants identified so far, differ mainly in this segment and the explanations of their emergence were mostly based on comparative structure analyses. Here we provide experimental studies on the stability, entrapment and variant formation of this peculiar gene cluster originally found in <em>S</em>. Typhimurium.</p> <h3>Methodology/Principal Findings</h3><p>Segregation and conjugation tests and various molecular techniques were used to detect the emerging SGI1 variants in <em>Salmonella</em> populations of 17 <em>Salmonella enterica</em> serovar Typhimurium DT104 isolates from Hungary. The SGI1s in these isolates proved to be fully competent in excision, conjugal transfer by the IncA/C helper plasmid R55, and integration into the <em>E. coli</em> chromosome. A trap vector has been constructed and successfully applied to capture the island on a plasmid. Monitoring of segregation of SGI1 indicated high stability of the island. SGI1-free segregants did not accumulate during long-term propagation, but several SGI1 variants could be obtained. Most of them appeared to be identical to SGI1-B and SGI1-C, but two new variants caused by deletions via a short-homology-dependent recombination process have also been detected. We have also noticed that the presence of the conjugation helper plasmid increased the formation of these deletion variants considerably.</p> <h3>Conclusions/Significance</h3><p>Despite that excision of SGI1 from the chromosome was proven in SGI1<sup>+</sup><em>Salmonella</em> populations, its complete loss could not be observed. On the other hand, we demonstrated that several variants, among them two newly identified ones, arose with detectable frequencies in these populations in a short timescale and their formation was promoted by the helper plasmid. This reflects that IncA/C helper plasmids are not only involved in the horizontal spreading of SGI1, but may also contribute to its evolution.</p> </div
The Salmonella Genomic Island 1 Is Specifically Mobilized In Trans by the IncA/C Multidrug Resistance Plasmid Family
BACKGROUND: The Salmonella genomic island 1 (SGI1) is a Salmonella enterica-derived integrative mobilizable element (IME) containing various complex multiple resistance integrons identified in several S. enterica serovars and in Proteus mirabilis. Previous studies have shown that SGI1 transfers horizontally by in trans mobilization in the presence of the IncA/C conjugative helper plasmid pR55. METHODOLOGY/PRINCIPAL FINDINGS: Here, we report the ability of different prevalent multidrug resistance (MDR) plasmids including extended-spectrum β-lactamase (ESBL) gene-carrying plasmids to mobilize the multidrug resistance genomic island SGI1. Through conjugation experiments, none of the 24 conjugative plasmids tested of the IncFI, FII, HI2, I1, L/M, N, P incompatibility groups were able to mobilize SGI1 at a detectable level (transfer frequency <10(-9)). In our collection, ESBL gene-carrying plasmids were mainly from the IncHI2 and I1 groups and thus were unable to mobilize SGI1. However, the horizontal transfer of SGI1 was shown to be specifically mediated by conjugative helper plasmids of the broad-host-range IncA/C incompatibility group. Several conjugative IncA/C MDR plasmids as well as the sequenced IncA/C reference plasmid pRA1 of 143,963 bp were shown to mobilize in trans SGI1 from a S. enterica donor to the Escherichia coli recipient strain. Depending on the IncA/C plasmid used, the conjugative transfer of SGI1 occurred at frequencies ranging from 10(-3) to 10(-6) transconjugants per donor. Of particular concern, some large IncA/C MDR plasmids carrying the extended-spectrum cephalosporinase bla(CMY-2) gene were shown to mobilize in trans SGI1. CONCLUSIONS/SIGNIFICANCE: The ability of the IncA/C MDR plasmid family to mobilize SGI1 could contribute to its spread by horizontal transfer among enteric pathogens. Moreover, the increasing prevalence of IncA/C plasmids in MDR S. enterica isolates worldwide has potential implications for the epidemic success of the antibiotic resistance genomic island SGI1 and its close derivatives
The Role of the st313-td Gene in Virulence of Salmonella Typhimurium ST313
Multidrug-resistant Salmonella enterica serovar Typhimurium ST313 has emerged in sub-Saharan Africa causing severe infections in humans. Therefore, it has been speculated that this specific sequence type, ST313, carries factors associated with increased pathogenicity. We assessed the role in virulence of a gene with a yet unknown function, st313-td, detected in ST313 through comparative genomics. Additionally, the structure of the genomic island ST313-GI, harbouring the gene was determined. The gene st313-td was cloned into wild type S. Typhimurium 4/74 (4/74-C) as well as knocked out in S. Typhimurium ST313 02-03/002 (Δst313-td) followed by complementation (02-03/002-C). Δst313-td was less virulent in mice following i.p. challenge than the wild type and this phenotype could be partly complemented in trans, indicating that st313-td plays a role during systemic infection. The gene st313-td was shown not to affect invasion of cultured epithelial cells, while the absence of the gene significantly affects uptake and intracellular survival within macrophages. The gene st313-td was proven to be strongly associated to invasiveness, harboured by 92.5% of S. Typhimurium blood isolates (n = 82) and 100% of S. Dublin strains (n = 50) analysed. On the contrary, S. Typhimurium isolates of animal and food origin (n = 82) did not carry st313-td. Six human, non-blood isolates of S. Typhimurium from Belarus, China and Nepal harboured the gene and belonged to sequence types ST398 and ST19. Our data showed a global presence of the st313-td gene and in other sequence types than ST313. The gene st313-td was shown to be expressed during logarithmic phase of growth in 14 selected Salmonella strains carrying the gene. This study reveals that st313-td plays a role in S. Typhimurium ST313 pathogenesis and adds another chapter to understanding of the virulence of S. Typhimurium and in particular of the emerging sequence type ST313
- …
