87 research outputs found

    Ultraviolet spectroscopy of narrow coronal mass ejections

    Get PDF
    We present Ultraviolet Coronagraph Spectrometer (UVCS) observations of 5 narrow coronal mass ejections (CMEs) that were among 15 narrow CMEs originally selected by Gilbert et al. (2001). Two events (1999 March 27, April 15) were "structured", i.e. in white light data they exhibited well defined interior features, and three (1999 May 9, May 21, June 3) were "unstructured", i.e. appeared featureless. In UVCS data the events were seen as 4-13 deg wide enhancements of the strongest coronal lines HI Ly-alpha and OVI (1032,1037 A). We derived electron densities for several of the events from the Large Angle Spectrometric Coronagraph (LASCO) C2 white light observations. They are comparable to or smaller than densities inferred for other CMEs. We modeled the observable properties of examples of the structured (1999 April 15) and unstructured (1999 May 9) narrow CMEs at different heights in the corona between 1.5 and 2 R(Sun). The derived electron temperatures, densities and outflow speeds are similar for those two types of ejections. They were compared with properties of polar coronal jets and other CMEs. We discuss different scenarios of narrow CME formation either as a jet formed by reconnection onto open field lines or CME ejected by expansion of closed field structures. Overall, we conclude that the existing observations do not definitively place the narrow CMEs into the jet or the CME picture, but the acceleration of the 1999 April 15 event resembles acceleration seen in many CMEs, rather than constant speeds or deceleration observed in jets.Comment: AASTeX, 22 pages, incl. 3 figures (2 color) and 3 tables. Accepted for publication in Ap.

    3D simulations of RS Oph: from accretion to nova blast

    Full text link
    RS Ophiuchi is a recurrent nova with a period of about 22 years, consisting of a wind accreting binary system with a white dwarf (WD) very close to the Chandrasekhar limit and a red giant star (RG). The system is considered a prime candidate to evolve into an SNIa. We present a 3D hydrodynamic simulation of the quiescent accretion and the subsequent explosive phase. The computed circumstellar mass distribution in the quiescent phase is highly structured with a mass enhancement in the orbital plane of about a factor of 2 as compared to the poleward directions. The simulated nova remnant evolves aspherically, propagating faster toward the poles. The shock velocities derived from the simulations are in agreement with those derived from observations. For v_RG = 20 km/s and for nearly isothermal flows, we derive a mass transfer rate to the WD of 10% of the mass loss of the RG. For an RG mass loss of 10^{-7} solar masses per year, we found the orbit of the system to decay by 3% per million years. With the derived mass transfer rate, multi-cycle nova models provide a qualitatively correct recurrence time, amplitude, and fastness of the nova. Our simulations provide, along with the observations and nova models, the third ingredient for a deeper understanding of the recurrent novae of the RS Oph type. In combination with recent multi-cycle nova models, our results suggests that the WD in RS Oph will increase in mass. Several speculative outcomes then seem plausible. The WD may reach the Chandrasekhar limit and explode as an SN Ia. Alternatively, the mass loss of the RG could result in a smaller Roche volume, a common envelope phase, and a narrow WD+WD system. Angular momentum loss due to graviational wave emission could trigger the merger of the two WDs and - perhaps - an SN Ia via the double degenerate scenario.Comment: Accepted by Astronomy & Astrophysics Letters, 4 pages, 5 figures; Version with high resolution figures and movie can be found at http://www.astro.phys.ethz.ch/staff/folini/private/research/rsoph/rsoph.htm

    UBVRI observations of the flickering of RS Ophiuchi at Quiescence

    Full text link
    We report observations of the flickering variability of the recurrent nova RS Oph at quiescence on the basis of simultaneous observations in 5 bands (UBVRI). RS Oph has flickering source with (U-B)_0=-0.62 \pm 0.07, (B-V)_0=0.15 \pm 0.10, (V-R)_0=0.25 \pm 0.05. We find for the flickering source a temperature T_fl = 9500 \pm 500 K, and luminosity L_fl = 50 - 150 L_sun (using a distance of d=1.6kpc). We also find that on a (U-B) vs (B-V) diagram the flickering of the symbiotic stars differs from that of the cataclysmic variables. The possible source of the flickering is discussed. The data are available upon request from the authors and on the web www.astro.bas.bg/~rz/RSOph.UBVRI.2010.MNRAS.tar.gz.Comment: 7 pages, MNRAS (accepted

    Making FORS2 fit for exoplanet observations (again)

    Full text link
    For about three years, it was known that precision spectrophotometry with FORS2 suffered from systematic errors that made quantitative observations of planetary transits impossible. We identified the Longitudinal Atmospheric Dispersion Compensator (LADC) as the most likely culprit, and therefore engaged in a project to exchange the LADC prisms with the uncoated ones from FORS1. This led to a significant improvement in the depth of FORS2 zero points, a reduction in the systematic noise, and should make FORS2 again competitive for transmission spectroscopy of exoplanets.Comment: To appear in the March issue of the ESO Messenge

    Changes in the red giant and dusty environment of the recurrent nova RS Ophiuchi following the 2006 eruption

    Get PDF
    We present near-infrared spectroscopy of the recurrent nova RS Ophiuchi (RS Oph) obtained on several occasions after its latest outburst in 2006 February. The 1–5 μm spectra are dominated by the red giant, but the H i, He i and coronal lines present during the eruption are present in all our observations. From the fits of the computed infrared spectral energy distributions to the observed fluxes, we find Teff= 4200 ± 200 K for the red giant. The first overtone CO bands at 2.3 μm, formed in the atmosphere of the red giant, are variable. The spectra clearly exhibit an infrared excess due to dust emission longward of 5 μm; we estimate an effective temperature for the emitting dust shell of 500 K, and find that the dust emission is also variable, being beyond the limit of detection in 2007. Most likely, the secondary star in RS Oph is intrinsically variable

    Circumstellar Na I and Ca II lines of type Ia supernovae in symbiotic scenario

    Full text link
    Formation of circumstellar lines of Na I and Ca II in type Ia supernovae is studied for the case, when supernova explodes in a binary system with a red giant. The model suggests a spherically-symmetric wind and takes into account ionization and heating of the wind by X-rays from the shock wave and by gamma-quanta of ^{56}Ni radioactive decay. For the wind density typical of the red giant the expected optical depth of the wind in Na I lines turnes out too low (\tau<0.001}) to detect the absorption. For the same wind densities the predicted optical depth of Ca II 3934 \AA is sufficient for the detection (\tau>0.1). I conclude that the absorption lines detected in SN 2006X cannot form in the red giant wind; they are rather related to clouds at distances larger than the dust evaporation radius (r>10^{17} cm). From the absence in SN 2006X of Ca II absorption lines not related with the similar Na I components I derive the upper limit of the mass loss rate by the wind with velocity u: \dot{M}<10^{-8}(u/10 km/s) M_{\odot} yr^{-1}.Comment: 10 pages, 6 figures, Astronomy Letters (accepted

    VLT observations of Compact Central Objects

    Full text link
    We present the first results of our VLT observation campaign of the Central Compact Objects (CCOs) in SNRs RX J085201.4-461753 (Vela Jr), 1E 1648-5051 (RCW 103) and RX J171328.4-394955 (G347.3-0.5). For Vela Jr., we found that the source is embedded in a compact optical nebulosity, possibly a bow-shock or a photo-ionization nebula, and we identified a candidate IR counterpart to the CCO. For RCW 103, we found no convincing evidence neither for 6 hrs IR modulation nor for variability on any time scale from the proposed counterpart, as well as for the other candidates close to the revised Chandra position. For G347.3-0.5, we identified few possible IR counterparts but none of them is apparently associated with the CCO.Comment: 4 pages, in Proc. of ``40 Years of Pulsars: Millisecond Pulsars, Magnetars and More'', AIP, in pres
    • …
    corecore