We present Ultraviolet Coronagraph Spectrometer (UVCS) observations of 5
narrow coronal mass ejections (CMEs) that were among 15 narrow CMEs originally
selected by Gilbert et al. (2001). Two events (1999 March 27, April 15) were
"structured", i.e. in white light data they exhibited well defined interior
features, and three (1999 May 9, May 21, June 3) were "unstructured", i.e.
appeared featureless. In UVCS data the events were seen as 4-13 deg wide
enhancements of the strongest coronal lines HI Ly-alpha and OVI (1032,1037 A).
We derived electron densities for several of the events from the Large Angle
Spectrometric Coronagraph (LASCO) C2 white light observations. They are
comparable to or smaller than densities inferred for other CMEs. We modeled the
observable properties of examples of the structured (1999 April 15) and
unstructured (1999 May 9) narrow CMEs at different heights in the corona
between 1.5 and 2 R(Sun). The derived electron temperatures, densities and
outflow speeds are similar for those two types of ejections. They were compared
with properties of polar coronal jets and other CMEs. We discuss different
scenarios of narrow CME formation either as a jet formed by reconnection onto
open field lines or CME ejected by expansion of closed field structures.
Overall, we conclude that the existing observations do not definitively place
the narrow CMEs into the jet or the CME picture, but the acceleration of the
1999 April 15 event resembles acceleration seen in many CMEs, rather than
constant speeds or deceleration observed in jets.Comment: AASTeX, 22 pages, incl. 3 figures (2 color) and 3 tables. Accepted
for publication in Ap.