2,807 research outputs found
Correlation between fracture surface morphology and toughness in Zr-based bulk metallic glasses
Fracture surfaces of Zr-based bulk metallic glasses of various compositions tested in the as-cast and annealed conditions were analyzed using scanning electron microscopy. The tougher samples have shown highly jagged patterns at the beginning stage of crack propagation, and the length and roughness of this jagged pattern correlate well with the measured fracture toughness values. These jagged patterns, the main source of energy dissipation in the sample, are attributed to the formation of shear bands inside the sample. This observation provides strong evidence of significant “plastic zone” screening at the crack tip
Measuring Galaxy Star Formation Rates From Integrated Photometry: Insights from Color-Magnitude Diagrams of Resolved Stars
We use empirical star formation histories (SFHs), measured from HST-based
resolved star color-magnitude diagrams, as input into population synthesis
codes to model the broadband spectral energy distributions (SEDs) of ~50 nearby
dwarf galaxies (6.5 < log M/M_* < 8.5, with metallicities ~10% solar). In the
presence of realistic SFHs, we compare the modeled and observed SEDs from the
ultraviolet (UV) through near-infrared (NIR) and assess the reliability of
widely used UV-based star formation rate (SFR) indicators. In the FUV through i
bands, we find that the observed and modeled SEDs are in excellent agreement.
In the Spitzer 3.6micron and 4.5micron bands, we find that modeled SEDs
systematically over-predict observed luminosities by up to ~0.2 dex, depending
on treatment of the TP-AGB stars in the synthesis models. We assess the
reliability of UV luminosity as a SFR indicator, in light of independently
constrained SFHs. We find that fluctuations in the SFHs alone can cause factor
of ~2 variations in the UV luminosities relative to the assumption of a
constant SFH over the past 100 Myr. These variations are not strongly
correlated with UV-optical colors, implying that correcting UV-based SFRs for
the effects of realistic SFHs is difficult using only the broadband SED.
Additionally, for this diverse sample of galaxies, we find that stars older
than 100 Myr can contribute from <5% to100% of the present day UV luminosity,
highlighting the challenges in defining a characteristic star formation
timescale associated with UV emission. We do find a relationship between UV
emission timescale and broadband UV-optical color, though it is different than
predictions based on exponentially declining SFH models. Our findings have
significant implications for the comparison of UV-based SFRs across
low-metallicity populations with diverse SFHs.Comment: 22 pages, 15 figures, ApJ accepte
Spitzer Local Volume Legacy (LVL) SEDs and Physical Properties
We present the panchromatic spectral energy distributions (SEDs) of the Local
Volume Legacy (LVL) survey which consists of 258 nearby galaxies (11 Mpc).
The wavelength coverage spans the ultraviolet to the infrared (1500
to 24 m) which is utilized to derive global physical
properties (i.e., star formation rate, stellar mass, internal extinction due to
dust.). With these data, we find color-color relationships and correlated
trends between observed and physical properties (i.e., optical magnitudes and
dust properties, optical color and specific star formation rate, and
ultraviolet-infrared color and metallicity). The SEDs are binned by different
galaxy properties to reveal how each property affects the observed shape of
these SEDs. In addition, due to the volume-limited nature of LVL, we utilize
the dwarf-dominated galaxy sample to test star formation relationships
established with higher-mass galaxy samples. We find good agreement with the
star-forming "main-sequence" relationship, but find a systematic deviation in
the infrared "main-sequence" at low luminosities. This deviation is attributed
to suppressed polycyclic aromatic hydrocarbon (PAH) formation in low
metallicity environments and/or the destruction of PAHs in more intense
radiation fields occurring near a suggested threshold in sSFR at a value of
log() 10.2.Comment: Accepted for publication in MNRAS (15 pages, 14 figures, 1 table
The Wyoming Survey for H-alpha. I. Initial Results at z ~ 0.16 and 0.24
The Wyoming Survey for H-alpha, or WySH, is a large-area, ground-based,
narrowband imaging survey for H-alpha-emitting galaxies over the latter half of
the age of the Universe. The survey spans several square degrees in a set of
fields of low Galactic cirrus emission. The observing program focuses on
multiple dz~0.02 epochs from z~0.16 to z~0.81 down to a uniform
(continuum+line) luminosity at each epoch of ~10^33 W uncorrected for
extinction (3sigma for a 3" diameter aperture). First results are presented
here for 98+208 galaxies observed over approximately 2 square degrees at
redshifts z~0.16 and 0.24, including preliminary luminosity functions at these
two epochs. These data clearly show an evolution with lookback time in the
volume-averaged cosmic star formation rate. Integrals of Schechter fits to the
extinction-corrected H-alpha luminosity functions indicate star formation rates
per co-moving volume of 0.009 and 0.014 h_70 M_sun/yr/Mpc^3 at z~0.16 and 0.24,
respectively. The formal uncertainties in the Schechter fits, based on this
initial subset of the survey, correspond to uncertainties in the cosmic star
formation rate density at the >~40% level; the tentative uncertainty due to
cosmic variance is 25%, estimated from separately carrying out the analysis on
data from the first two fields with substantial datasets.Comment: To appear in the Astronomical Journa
Modeling the Effects of Star Formation Histories on Halpha and Ultra-Violet Fluxes in Nearby Dwarf Galaxies
We consider the effects of non-constant star formation histories (SFHs) on
Halpha and GALEX far ultra-violet (FUV) star formation rate (SFR) indicators.
Under the assumption of a fully populated Chabrier IMF, we compare the
distribution of Halpha-to-FUV flux ratios from ~ 1500 simple, periodic model
SFHs with observations of 185 galaxies from the Spitzer Local Volume Legacy
survey. We find a set of SFH models that are well matched to the data, such
that more massive galaxies are best characterized by nearly constant SFHs,
while low mass systems experience bursts amplitudes of ~ 30 (i.e., an increase
in the SFR by a factor of 30 over the SFR during the inter-burst period), burst
durations of tens of Myr, and periods of ~ 250 Myr; these SFHs are broadly
consistent with the increased stochastic star formation expected in systems
with lower SFRs. We analyze the predicted temporal evolution of galaxy stellar
mass, R-band surface brightness, Halpha-derived SFR, and blue luminosity, and
find that they provide a reasonable match to observed flux distributions. We
find that our model SFHs are generally able to reproduce both the observed
systematic decline and increased scatter in Halpha-to-FUV ratios toward low
mass systems, without invoking other physical mechanisms. We also compare our
predictions with those from the Integrated Galactic IMF theory with a constant
SFR. We find that while both predict a systematic decline in the observed
ratios, only the time variable SFH models are capable of producing the observed
population of low mass galaxies ( < 10 Msun) with normal
Halpha-to-FUV ratios. These results demonstrate that a variable IMF alone has
difficulty explaining the observed scatter in the Halpha-to-FUV ratios. We
conclude by considering the limitations of the model SFHs, and discuss the use
of additional empirical constraints to improve future SFH modeling efforts.Comment: 15 pages, 11 Figures. Accepted for publication in Ap
Mid-Infrared Spectral Measures of Star-Formation and AGN Activity in Normal Galaxies
We investigate the use of MIR PAH bands, continuum and emission lines as
probes of star-formation and AGN activity in a sample of 100 'normal' and local
(z~0.1) emission-line galaxies. The MIR spectra were obtained with the Spitzer
Space Telescope Infrared Spectrograph (IRS) as part of the Spitzer-SDSS-GALEX
Spectroscopic Survey (SSGSS) which includes multi-wavelength photometry from
the UV to the FIR and optical spectroscopy. The continuum and features were
extracted using PAHFIT (Smith et al. 2007), a decomposition code which we find
to yield PAH equivalent widths up to ~30 times larger than the commonly used
spline methods. Despite the lack of extreme objects in our sample (such as
strong AGNs, low metallicity galaxies or ULIRGs), we find significant
variations in PAH, continuum and emission line properties and systematic trends
between these MIR properties and optically derived physical properties such as
age, metallicity and radiation field hardness. We revisit the diagnostic
diagram relating PAH equivalent widths and [Ne II]12.8micrometers/[O
IV]25.9micrometers line ratios and find it to be in much better agreement with
the standard optical star-formation/AGN classification than when spline
decompositions are used, while also potentially revealing obscured AGNs. The
luminosity of individual PAH components, of the continuum, and with poorer
statistics, of the neon emission lines and molecular hydrogen lines, are found
to be tightly correlated to the total IR luminosity, making individual MIR
components good gauges of the total dust emission in SF galaxies. Like the
total IR luminosity, these individual components can be used to estimate dust
attenuation in the UV and in Halpha lines based on energy balance arguments. We
also propose average scaling relations between these components and dust
corrected, Halpha derived star-formation rates.Comment: Accepted for publication in Ap
LEGUS and Halpha-LEGUS Observations of Star Clusters in NGC 4449: Improved Ages and the Fraction of Light in Clusters as a Function of Age
We present a new catalog and results for the cluster system of the starburst
galaxy NGC 4449 based on multi-band imaging observations taken as part of the
LEGUS and Halpha-LEGUS surveys. We improve the spectral energy fitting method
used to estimate cluster ages and find that the results, particularly for older
clusters, are in better agreement with those from spectroscopy. The inclusion
of Halpha measurements, the role of stochasticity for low mass clusters, the
assumptions about reddening, and the choices of SSP model and metallicity all
have important impacts on the age-dating of clusters. A comparison with ages
derived from stellar color-magnitude diagrams for partially resolved clusters
shows reasonable agreement, but large scatter in some cases. The fraction of
light found in clusters relative to the total light (i.e., T_L) in the U, B,
and V filters in 25 different ~kpc-size regions throughout NGC 4449 correlates
with both the specific Region Luminosity, R_L, and the dominant age of the
underlying stellar population in each region. The observed cluster age
distribution is found to decline over time as dN/dt ~ t^g, with g=-0.85+/-0.15,
independent of cluster mass, and is consistent with strong, early cluster
disruption. The mass functions of the clusters can be described by a power law
with dN/dM ~ M^b and b=-1.86+/-0.2, independent of cluster age. The mass and
age distributions are quite resilient to differences in age-dating methods.
There is tentative evidence for a factor of 2-3 enhancement in both the star
and cluster formation rate ~100 - 300 Myr ago, indicating that cluster
formation tracks star formation generally. The enhancement is probably
associated with an earlier interaction event
Empirical ugri-UBVRc Transformations for Galaxies
We present empirical color transformations between Sloan Digital Sky Survey
ugri and Johnson-Cousins UBVRc photometry for nearby galaxies (D < 11 Mpc). We
use the Local Volume Legacy (LVL) galaxy sample where there are 90 galaxies
with overlapping observational coverage for these two filter sets. The LVL
galaxy sample consists of normal, non-starbursting galaxies. We also examine
how well the LVL galaxy colors are described by previous transformations
derived from standard calibration stars and model-based galaxy templates. We
find significant galaxy color scatter around most of the previous
transformation relationships. In addition, the previous transformations show
systematic offsets between transformed and observed galaxy colors which are
visible in observed color-color trends. The LVL-based transformations
show no systematic color offsets and reproduce the observed color-color galaxy
trends.Comment: Accepted for publication in MNRAS (9 pages, 6 figures, 4 tables
- …
