2,807 research outputs found

    Correlation between fracture surface morphology and toughness in Zr-based bulk metallic glasses

    Get PDF
    Fracture surfaces of Zr-based bulk metallic glasses of various compositions tested in the as-cast and annealed conditions were analyzed using scanning electron microscopy. The tougher samples have shown highly jagged patterns at the beginning stage of crack propagation, and the length and roughness of this jagged pattern correlate well with the measured fracture toughness values. These jagged patterns, the main source of energy dissipation in the sample, are attributed to the formation of shear bands inside the sample. This observation provides strong evidence of significant “plastic zone” screening at the crack tip

    Measuring Galaxy Star Formation Rates From Integrated Photometry: Insights from Color-Magnitude Diagrams of Resolved Stars

    Full text link
    We use empirical star formation histories (SFHs), measured from HST-based resolved star color-magnitude diagrams, as input into population synthesis codes to model the broadband spectral energy distributions (SEDs) of ~50 nearby dwarf galaxies (6.5 < log M/M_* < 8.5, with metallicities ~10% solar). In the presence of realistic SFHs, we compare the modeled and observed SEDs from the ultraviolet (UV) through near-infrared (NIR) and assess the reliability of widely used UV-based star formation rate (SFR) indicators. In the FUV through i bands, we find that the observed and modeled SEDs are in excellent agreement. In the Spitzer 3.6micron and 4.5micron bands, we find that modeled SEDs systematically over-predict observed luminosities by up to ~0.2 dex, depending on treatment of the TP-AGB stars in the synthesis models. We assess the reliability of UV luminosity as a SFR indicator, in light of independently constrained SFHs. We find that fluctuations in the SFHs alone can cause factor of ~2 variations in the UV luminosities relative to the assumption of a constant SFH over the past 100 Myr. These variations are not strongly correlated with UV-optical colors, implying that correcting UV-based SFRs for the effects of realistic SFHs is difficult using only the broadband SED. Additionally, for this diverse sample of galaxies, we find that stars older than 100 Myr can contribute from <5% to100% of the present day UV luminosity, highlighting the challenges in defining a characteristic star formation timescale associated with UV emission. We do find a relationship between UV emission timescale and broadband UV-optical color, though it is different than predictions based on exponentially declining SFH models. Our findings have significant implications for the comparison of UV-based SFRs across low-metallicity populations with diverse SFHs.Comment: 22 pages, 15 figures, ApJ accepte

    Spitzer Local Volume Legacy (LVL) SEDs and Physical Properties

    Full text link
    We present the panchromatic spectral energy distributions (SEDs) of the Local Volume Legacy (LVL) survey which consists of 258 nearby galaxies (D<D<11 Mpc). The wavelength coverage spans the ultraviolet to the infrared (1500 A˚\textrm{\AA} to 24 μ\mum) which is utilized to derive global physical properties (i.e., star formation rate, stellar mass, internal extinction due to dust.). With these data, we find color-color relationships and correlated trends between observed and physical properties (i.e., optical magnitudes and dust properties, optical color and specific star formation rate, and ultraviolet-infrared color and metallicity). The SEDs are binned by different galaxy properties to reveal how each property affects the observed shape of these SEDs. In addition, due to the volume-limited nature of LVL, we utilize the dwarf-dominated galaxy sample to test star formation relationships established with higher-mass galaxy samples. We find good agreement with the star-forming "main-sequence" relationship, but find a systematic deviation in the infrared "main-sequence" at low luminosities. This deviation is attributed to suppressed polycyclic aromatic hydrocarbon (PAH) formation in low metallicity environments and/or the destruction of PAHs in more intense radiation fields occurring near a suggested threshold in sSFR at a value of log(sSFRsSFR) \sim -10.2.Comment: Accepted for publication in MNRAS (15 pages, 14 figures, 1 table

    The Wyoming Survey for H-alpha. I. Initial Results at z ~ 0.16 and 0.24

    Full text link
    The Wyoming Survey for H-alpha, or WySH, is a large-area, ground-based, narrowband imaging survey for H-alpha-emitting galaxies over the latter half of the age of the Universe. The survey spans several square degrees in a set of fields of low Galactic cirrus emission. The observing program focuses on multiple dz~0.02 epochs from z~0.16 to z~0.81 down to a uniform (continuum+line) luminosity at each epoch of ~10^33 W uncorrected for extinction (3sigma for a 3" diameter aperture). First results are presented here for 98+208 galaxies observed over approximately 2 square degrees at redshifts z~0.16 and 0.24, including preliminary luminosity functions at these two epochs. These data clearly show an evolution with lookback time in the volume-averaged cosmic star formation rate. Integrals of Schechter fits to the extinction-corrected H-alpha luminosity functions indicate star formation rates per co-moving volume of 0.009 and 0.014 h_70 M_sun/yr/Mpc^3 at z~0.16 and 0.24, respectively. The formal uncertainties in the Schechter fits, based on this initial subset of the survey, correspond to uncertainties in the cosmic star formation rate density at the >~40% level; the tentative uncertainty due to cosmic variance is 25%, estimated from separately carrying out the analysis on data from the first two fields with substantial datasets.Comment: To appear in the Astronomical Journa

    Modeling the Effects of Star Formation Histories on Halpha and Ultra-Violet Fluxes in Nearby Dwarf Galaxies

    Get PDF
    We consider the effects of non-constant star formation histories (SFHs) on Halpha and GALEX far ultra-violet (FUV) star formation rate (SFR) indicators. Under the assumption of a fully populated Chabrier IMF, we compare the distribution of Halpha-to-FUV flux ratios from ~ 1500 simple, periodic model SFHs with observations of 185 galaxies from the Spitzer Local Volume Legacy survey. We find a set of SFH models that are well matched to the data, such that more massive galaxies are best characterized by nearly constant SFHs, while low mass systems experience bursts amplitudes of ~ 30 (i.e., an increase in the SFR by a factor of 30 over the SFR during the inter-burst period), burst durations of tens of Myr, and periods of ~ 250 Myr; these SFHs are broadly consistent with the increased stochastic star formation expected in systems with lower SFRs. We analyze the predicted temporal evolution of galaxy stellar mass, R-band surface brightness, Halpha-derived SFR, and blue luminosity, and find that they provide a reasonable match to observed flux distributions. We find that our model SFHs are generally able to reproduce both the observed systematic decline and increased scatter in Halpha-to-FUV ratios toward low mass systems, without invoking other physical mechanisms. We also compare our predictions with those from the Integrated Galactic IMF theory with a constant SFR. We find that while both predict a systematic decline in the observed ratios, only the time variable SFH models are capable of producing the observed population of low mass galaxies (MM_{*} < 107^{7} Msun) with normal Halpha-to-FUV ratios. These results demonstrate that a variable IMF alone has difficulty explaining the observed scatter in the Halpha-to-FUV ratios. We conclude by considering the limitations of the model SFHs, and discuss the use of additional empirical constraints to improve future SFH modeling efforts.Comment: 15 pages, 11 Figures. Accepted for publication in Ap

    Mid-Infrared Spectral Measures of Star-Formation and AGN Activity in Normal Galaxies

    Get PDF
    We investigate the use of MIR PAH bands, continuum and emission lines as probes of star-formation and AGN activity in a sample of 100 'normal' and local (z~0.1) emission-line galaxies. The MIR spectra were obtained with the Spitzer Space Telescope Infrared Spectrograph (IRS) as part of the Spitzer-SDSS-GALEX Spectroscopic Survey (SSGSS) which includes multi-wavelength photometry from the UV to the FIR and optical spectroscopy. The continuum and features were extracted using PAHFIT (Smith et al. 2007), a decomposition code which we find to yield PAH equivalent widths up to ~30 times larger than the commonly used spline methods. Despite the lack of extreme objects in our sample (such as strong AGNs, low metallicity galaxies or ULIRGs), we find significant variations in PAH, continuum and emission line properties and systematic trends between these MIR properties and optically derived physical properties such as age, metallicity and radiation field hardness. We revisit the diagnostic diagram relating PAH equivalent widths and [Ne II]12.8micrometers/[O IV]25.9micrometers line ratios and find it to be in much better agreement with the standard optical star-formation/AGN classification than when spline decompositions are used, while also potentially revealing obscured AGNs. The luminosity of individual PAH components, of the continuum, and with poorer statistics, of the neon emission lines and molecular hydrogen lines, are found to be tightly correlated to the total IR luminosity, making individual MIR components good gauges of the total dust emission in SF galaxies. Like the total IR luminosity, these individual components can be used to estimate dust attenuation in the UV and in Halpha lines based on energy balance arguments. We also propose average scaling relations between these components and dust corrected, Halpha derived star-formation rates.Comment: Accepted for publication in Ap

    LEGUS and Halpha-LEGUS Observations of Star Clusters in NGC 4449: Improved Ages and the Fraction of Light in Clusters as a Function of Age

    Get PDF
    We present a new catalog and results for the cluster system of the starburst galaxy NGC 4449 based on multi-band imaging observations taken as part of the LEGUS and Halpha-LEGUS surveys. We improve the spectral energy fitting method used to estimate cluster ages and find that the results, particularly for older clusters, are in better agreement with those from spectroscopy. The inclusion of Halpha measurements, the role of stochasticity for low mass clusters, the assumptions about reddening, and the choices of SSP model and metallicity all have important impacts on the age-dating of clusters. A comparison with ages derived from stellar color-magnitude diagrams for partially resolved clusters shows reasonable agreement, but large scatter in some cases. The fraction of light found in clusters relative to the total light (i.e., T_L) in the U, B, and V filters in 25 different ~kpc-size regions throughout NGC 4449 correlates with both the specific Region Luminosity, R_L, and the dominant age of the underlying stellar population in each region. The observed cluster age distribution is found to decline over time as dN/dt ~ t^g, with g=-0.85+/-0.15, independent of cluster mass, and is consistent with strong, early cluster disruption. The mass functions of the clusters can be described by a power law with dN/dM ~ M^b and b=-1.86+/-0.2, independent of cluster age. The mass and age distributions are quite resilient to differences in age-dating methods. There is tentative evidence for a factor of 2-3 enhancement in both the star and cluster formation rate ~100 - 300 Myr ago, indicating that cluster formation tracks star formation generally. The enhancement is probably associated with an earlier interaction event

    Empirical ugri-UBVRc Transformations for Galaxies

    Full text link
    We present empirical color transformations between Sloan Digital Sky Survey ugri and Johnson-Cousins UBVRc photometry for nearby galaxies (D < 11 Mpc). We use the Local Volume Legacy (LVL) galaxy sample where there are 90 galaxies with overlapping observational coverage for these two filter sets. The LVL galaxy sample consists of normal, non-starbursting galaxies. We also examine how well the LVL galaxy colors are described by previous transformations derived from standard calibration stars and model-based galaxy templates. We find significant galaxy color scatter around most of the previous transformation relationships. In addition, the previous transformations show systematic offsets between transformed and observed galaxy colors which are visible in observed color-color trends. The LVL-based galaxygalaxy transformations show no systematic color offsets and reproduce the observed color-color galaxy trends.Comment: Accepted for publication in MNRAS (9 pages, 6 figures, 4 tables
    corecore