2,620 research outputs found
Effect of a Normal-State Pseudogap on Optical Conductivity in Underdoped Cuprate Superconductors
We calculate the c-axis infrared conductivity in
underdoped cuprate superconductors for spinfluctuation exchange scattering
within the CuO-planes including a phenomenological d-wave pseudogap of
amplitude . For temperatures decreasing below a temperature , a gap for develops in in the
incoherent (diffuse) transmission limit. The resistivity shows 'semiconducting'
behavior, i.e. it increases for low temperatures above the constant behavior
for . We find that the pseudogap structure in the in-plane optical
conductivity is about twice as big as in the interplane conductivity
, in qualitative agreement with experiment. This is a
consequence of the fact that the spinfluctuation exchange interaction is
suppressed at low frequencies as a result of the opening of the pseudogap.
While the c-axis conductivity in the underdoped regime is described best by
incoherent transmission, in the overdoped regime coherent conductance gives a
better description.Comment: to be published in Phys. Rev. B (November 1, 1999
Nonlinear microwave response of MgB2
We calculate the intrinsic nonlinear microwave response of the two gap
superconductor MgB2 in the clean and dirty limits. Due to the small value of
the pi band gap, the nonlinear response at low temperatures is larger than for
a single gap Bardeen-Cooper-Schrieffer (BCS) s-wave superconductor with a
transition temperature of 40 K. Comparing this result with the intrinsic
nonlinear d-wave response of YBa2Cu3O7 (YBCO) we find a comparable response at
temperatures around 20 K. Due to its two gap nature, impurity scattering in
MgB2 can be used to reduce the nonlinear response if the scattering rate in the
pi band is made larger than the one in the sigma band.Comment: 4 pages, 4 figure
Nodal Quasiparticle Lifetimes in Cuprate Superconductors
A new generation of angular-resolved photoemission spectroscopy (ARPES)
measurements on the cuprate superconductors offer the promise of enhanced
momentum and energy resolution. In particular, the energy and temperature
dependence of the on-shell nodal (k_x=k_y) quasiparticle scattering rate can be
studied. In the superconducting state, low temperature transport measurements
suggest that one can describe nodal quasiparticles within the framework of a
BCS d-wave model by including forward elastic scattering and spin-fluctuation
inelastic scattering. Here, using this model, we calculate the temperature and
frequency dependence of the on-shell nodal quasiparticle scattering rate in the
superconducting state which determines the momentum width of the ARPES momentum
distribution curves. For a zero-energy quasiparticle at the nodal momentum k_N,
both the elastic and inelastic scattering rate show a sudden decrease as the
temperature drops below Tc, reflecting the onset of the gap amplitude. At low
temperatures the scattering rate decreases as T^3 and approaches a zero
temperature value determined by the elastic impurity scattering. For T>T_c, we
find a quasilinear dependence on T. At low reduced temperatures, the elastic
scattering rate for the nodal quasiparticles exhibits a quasilinear increase at
low energy which arises from elastic scattering processes. The inelastic
spin-fluctuation scattering leads to a low energy omega^3 dependence which, for
omega>~Delta_0, crosses over to a quasilinear behavior.Comment: 8 pages, 7 figures, minor revision
Electronic theory for superconductivity in SrRuO: triplet pairing due to spin-fluctuation exchange
Using a two-dimensional Hubbard Hamiltonian for the three electronic bands
crossing the Fermi level in SrRuO we calculate the band structure and
spin susceptibility in quantitative agreement with
nuclear magnetic resonance (NMR) and inelastic neutron scattering (INS)
experiments. The susceptibility has two peaks at {\bf Q}
due to the nesting Fermi surface properties and at {\bf q}
due to the tendency towards ferromagnetism. Applying spin-fluctuation exchange
theory as in layered cuprates we determine from ,
electronic dispersions, and Fermi surface topology that superconductivity in
SrRuO consists of triplet pairing. Combining the Fermi surface topology
and the results for we can exclude and wave
symmetry for the superconducting order parameter. Furthermore, within our
analysis and approximations we find that -wave symmetry is slightly favored
over p-wave symmetry due to the nesting properties of the Fermi surface.Comment: 5 pages, 5 figures, misprints correcte
Observation of Andreev bound states in bicrystal grain-boundary Josephson junctions of the electron doped superconductor LaCeCuO
We observe a zero-bias conductance peak (ZBCP) in the ab-plane quasiparticle
tunneling spectra of thin film grain-boundary Josephson junctions made of the
electron doped cuprate superconductor LaCeCuO. An applied magnetic field
reduces the spectral weight around zero energy and shifts it non-linearly to
higher energies consistent with a Doppler shift of the Andreev bound states
(ABS) energy. For all magnetic fields the ZBCP appears simultaneously with the
onset of superconductivity. These observations strongly suggest that the ZBCP
results from the formation of ABS at the junction interfaces, and,
consequently, that there is a sign change in the symmetry of the
superconducting order parameter of this compound consistent with a d-wave
symmetry.Comment: 9 pages, 7 figures; December 2004, accepted for publication in Phys.
Rev.
Shrinking a large dataset to identify variables associated with increased risk of Plasmodium falciparum infection in Western Kenya
Large datasets are often not amenable to analysis using traditional single-step approaches. Here, our general objective was to apply imputation techniques, principal component analysis (PCA), elastic net and generalized linear models to a large dataset in a systematic approach to extract the most meaningful predictors for a health outcome. We extracted predictors for Plasmodium falciparum infection, from a large covariate dataset while facing limited numbers of observations, using data from the People, Animals, and their Zoonoses (PAZ) project to demonstrate these techniques: data collected from 415 homesteads in western Kenya, contained over 1500 variables that describe the health, environment, and social factors of the humans, livestock, and the homesteads in which they reside. The wide, sparse dataset was simplified to 42 predictors of P. falciparum malaria infection and wealth rankings were produced for all homesteads. The 42 predictors make biological sense and are supported by previous studies. This systematic data-mining approach we used would make many large datasets more manageable and informative for decision-making processes and health policy prioritization
Effect of Impurity Scattering on the Nonlinear Microwave Response in High-Tc Superconductors
We theoretically investigate intermodulation distortion in high-Tc
superconductors. We study the effect of nonmagnetic impurities on the real and
imaginary parts of nonlinear conductivity. The nonlinear conductivity is
proportional to the inverse of temperature owing to the dependence of the
damping effect on energy, which arises from the phase shift deviating from the
unitary limit. It is shown that the final-states interaction makes the real
part predominant over the imaginary part. These effects have not been included
in previous theories based on the two-fluid model, enabling a consistent
explanation for the experiments with the rf and dc fields
Wind measurement system
A system for remotely measuring vertical and horizontal winds present in discrete volumes of air at selected locations above the ground is described. A laser beam is optically focused in range by a telescope, and the output beam is conically scanned at an angle about a vertical axis. The backscatter, or reflected light, from the ambient particulates in a volume of air, the focal volume, is detected for shifts in wavelength, and from these, horizontal and vertical wind components are computed
Pressure and isotope effect on the anisotropy of MgB
We analyze the data for the pressure and boron isotope effect on the
temperature dependence of the magnetization near . Invoking the
universal scaling relation for the magnetization at fixed magnetic field it is
shown that the relative shift of , induced by pressure or boron isotope
exchange, mirrors essentially that of the anisotropy. This uncovers a novel
generic property of anisotropic type II superconductors, inexistent in the
isotropic case. For MgB it implies that the renormalization of the Fermi
surface topology due to pressure or isotope exchange is dominated by a
mechanism controlling the anisotropy.Comment: 7 pages, 3 figure
- …
