835 research outputs found
South-West extension of the hard X-ray emission from the Coma cluster
We explore the morphology of hard (18-30 keV) X-ray emission from the Coma
cluster of galaxies. We analyze a deep (1.1 Ms) observation of the Coma cluster
with the ISGRI imager on board the \emph{INTEGRAL} satellite. We show that the
source extension in the North-East to South-West (SW) direction ()
significantly exceeds the size of the point spread function of ISGRI, and that
the centroid of the image of the source in the 18-30 keV band is displaced in
the SW direction compared to the centroid in the 1-10 keV band. To test the
nature of the SW extension we fit the data assuming different models of source
morphology. The best fit is achieved with a diffuse source of elliptical shape,
although an acceptable fit can be achieved assuming an additional point source
SW of the cluster core. In the case of an elliptical source, the direction of
extension of the source coincides with the direction toward the subcluster
falling onto the Coma cluster. If the SW excess is due to the presence of a
point source with a hard spectrum, we show that there is no obvious X-ray
counterpart for this additional source, and that the closest X-ray source is
the quasar EXO 1256+281, which is located from the centroid of the
excess. The observed morphology of the hard X-ray emission clarifies the nature
of the hard X-ray "excess" emission from the Coma cluster, which is due to the
presence of an extended hard X-ray source SW of the cluster core.Comment: 7pages, 10 figure
A Self-Consistent Treatment of the Electromotive Force in Magnetohydrodynamics for Large Diffusivities
The coupled equations that describe the effect of large-scale magnetic and
velocity fields on forced high-diffusivity magnetohydrodynamic flows are
investigated through an extension of mean field electrodynamics. Our results
generalise those of R\"adler & Brandenburg (2010), who consider a similar
situation but assume that the effect of the Lorentz force on the momentum
equation can be neglected. New mean coupling terms are shown to appear, which
can lead to large-scale growth of magnetic and velocity fields even when the
usual -effects are absent.Comment: Submitted to Astron. Nach
The alpha-effect in rotating convection: a comparison of numerical simulations
Numerical simulations are an important tool in furthering our understanding
of turbulent dynamo action, a process that occurs in a vast range of
astrophysical bodies. It is important in all computational work that
comparisons are made between different codes and, if non-trivial differences
arise, that these are explained. Kapyla et al (2010: MNRAS 402, 1458) describe
an attempt to reproduce the results of Hughes & Proctor (2009: PRL 102, 044501)
and, by employing a different methodology, they arrive at very different
conclusions concerning the mean electromotive force and the generation of
large-scale fields. Here we describe why the simulations of Kapyla et al (2010)
are simply not suitable for a meaningful comparison, since they solve different
equations, at different parameter values and with different boundary
conditions. Furthermore we describe why the interpretation of Kapyla et al
(2010) of the calculation of the alpha-effect is inappropriate and argue that
the generation of large-scale magnetic fields by turbulent convection remains a
problematic issue.Comment: Submitted to MNRAS. 5 pages, 3 figure
Discovery of the INTEGRAL X/Gamma-ray transient IGR J00291+5934: a Comptonised accreting ms pulsar ?
We report the discovery of a high-energy transient with the IBIS/ISGRI
detector on board the INTEGRAL observatory. The source, namely IGR J00291+5934,
was first detected on 2nd December 2004 in the routine monitoring of the
IBIS/ISGRI 20--60 keV images. The observations were conducted during Galactic
Plane Scans, which are a key part of the INTEGRAL Core Programme observations.
After verifying the basic source behaviour, the discovery was announced on 3rd
December. The transient shows a hard Comptonised spectrum, with peak energy
release at about 20 keV and a total luminosity of ~ 0.9E36 erg/s in the 5--100
keV range, assuming a distance of 3 kpc. Following the INTEGRAL announcement of
the discovery of IGR J00291+5934, a number of observations were made by other
instruments. We summarise the results of those observations and, together with
the INTEGRAL data, identifiy IGR J00291+5934 as the 6th member of a class of
accreting X-ray millisecond pulsars.Comment: Accepted for publication as an A&A Letter 24/01/2005. 5 pages, 2
figure
Very Extended X-ray and H-alpha Emission in M82: Implications for the Superwind Phenomenon
We discuss the properties and implications of a 3.7x0.9 kpc region of
spatially-coincident X-ray and H-alpha emission about 11.6 kpc to the north of
the galaxy M82 previously discussed by Devine and Bally (1999). The PSPC X-ray
spectrum is fit by thermal plasma (kT=0.80+-0.17 keV) absorbed by only the
Galactic foreground column density. We evaluate the relationship of the
X-ray/H-alpha ridge to the M82 superwind. The main properties of the X-ray
emission can all be explained as being due to shock-heating driven as the
superwind encounters a massive ionized cloud in the halo of M82. This encounter
drives a slow shock into the cloud, which contributes to the excitation of the
observed H-alpha emission. At the same time, a fast bow-shock develops in the
superwind just upstream of the cloud, and this produces the observed X-ray
emission. This interpretation would imply that the superwind has an outflow
speed of roughly 800 km/s, consistent with indirect estimates based on its
general X-ray properties and the kinematics of the inner kpc-scale region of
H-alpha filaments. The gas in the M82 ridge is roughly two orders-of-magnitude
hotter than the minimum "escape temperature" at this radius, so this gas will
not be retained by M82.
(abridged)Comment: 24 pages (latex), 3 figures (2 gif files and one postscript),
accepted for publication in Part 1 of The Astrophysical Journa
INTEGRAL and XMM-Newton observations of the weak GRB 030227
We present INTEGRAL and XMM-Newton observations of the prompt gamma-ray
emission and the X-ray afterglow of GRB030227, the first GRB for which the
quick localization obtained with the INTEGRAL Burst Alert System (IBAS) has led
to the discovery of X-ray and optical afterglows. GRB030227 had a duration of
about 20 s and a peak flux of 1.1 photons cm^-2 s^-1 in the 20-200 keV energy
range. The time averaged spectrum can be fit by a single power law with photon
index about 2 and we find some evidence for a hard to soft spectral evolution.
The X-ray afterglow has been detected starting only 8 hours after the prompt
emission, with a 0.2-10 keV flux decreasing as t^-1 from 1.3x10e-12 to 5x10e-13
erg cm^-2 s^-1. The afterglow spectrum is well described by a power law with
photon index 1.94+/-0.05 modified by a redshifted neutral absorber with column
density of several 10e22 cm^-2. A possible emission line at 1.67 keV could be
due to Fe for a redshift z=3, consistent with the value inferred from the
absorption.Comment: 16 pages, 5 figures, latex, Accepted for publication in The
Astrophysical Journal Letter
INTEGRAL discovery of non-thermal hard X-ray emission from the Ophiuchus cluster
We present the results of deep observations of the Ophiuchus cluster of
galaxies with INTEGRAL in the 3-80 keV band. We analyse 3 Ms of INTEGRAL data
on the Ophiuchus cluster with the IBIS/ISGRI hard X-ray imager and the JEM-X
X-ray monitor. In the X-ray band using JEM-X, we show that the source is
extended, and that the morphology is compatible with the results found by
previous missions. Above 20 keV, we show that the size of the source is
slightly larger than the PSF of the instrument, and is consistent with the soft
X-ray morphology found with JEM-X and ASCA. Thanks to the constraints on the
temperature provided by JEM-X, we show that the spectrum of the cluster is not
well fitted by a single-temperature thermal Bremsstrahlung model, and that
another spectral component is needed to explain the high energy data. We detect
the high energy tail with a higher detection significance (6.4 sigma) than the
BeppoSAX claim (2 sigma). Because of the imaging capabilities of JEM-X and
ISGRI, we are able to exclude the possibility that the excess emission comes
from very hot regions or absorbed AGN, which proves that the excess emission is
indeed of non-thermal origin. Using the available radio data together with the
non-thermal hard X-ray flux, we estimate a magnetic field B ~ 0.1-0.2 mu G.Comment: 8 pages, 9 figures, accepted by A&
Discovery of a new INTEGRAL source: IGR J19140+0951
IGR J19140+0951 (formerly known as IGR J19140+098) was discovered with the
INTEGRAL satellite in March 2003. We report the details of the discovery, using
an improved position for the analysis. We have performed a simultaneous study
of the 5-100 keV JEM-X and ISGRI spectra from which we can distinguish two
different states. From the results of our analysis we propose that IGR
J19140+0951 is a persistent Galactic X-ray binary, probably hosting a neutron
star although a black hole cannot be completely ruled out.Comment: 4 pages, 4 figures. Accepted for publication in A&A
Clinical factors associated with the non-utilization of an anaesthesia incident reporting system
Background Incident reporting is a widely recommended method to measure undesirable events in anaesthesia. Under-utilization is a major weakness of voluntary incident reporting systems. Little is known about factors influencing reporting practices, particularly the clinical environment, anaesthesia team composition, severity of the incident, and perceived risk of litigation. The purpose of this study was to assess each of these, using an existing anaesthesia database. Methods We performed a retrospective cohort study and analysed 46 207 surgical patients. We used multivariate analysis to identify factors associated with the non-utilization of the reporting system. Results We found that in 7022 (15.1%) of the procedures performed, the incident reporting system was not used. Factors associated with the non-use of the system were regional anaesthesia/local anaesthesia, odds ratio (OR) 1.64 [95% confidence interval (CI) 1.03-2.62], emergency procedures OR 1.15 (95% CI: 1.05-1.27), and a consultant anaesthetist working without a trainee, OR 1.71 (95% CI: 1.03-2.82). In contrast, factors such as longer duration of surgery, OR 0.85 (95% CI: 0.76-0.94), the presence of a senior anaesthesia trainee, OR 0.86 (95% CI: 0.81-0.92), and the occurrence of severe complications with a high risk of litigation (i.e. death, nerve injuries) were less associated with a non-use of the reporting system, OR 0.65 (95% CI: 0.44-0.97). Team composition and time of day had no measurable impact on reporting practices. Conclusions Clinical factors play a significant role in the utilization of an anaesthesia incident reporting system and more particularly, severity of complications and higher liability risks which appear more as incentives than barriers to incident reportin
The Rich Mid-Infrared Environments of Two Highly-Obscured X-ray Binaries: Spitzer Observations of IGR J16318-4848 and GX 301-2
We present the results of Spitzer mid-infrared spectroscopic observations of
two highly-obscured massive X-ray binaries: IGR J16318-4848 and GX301-2. Our
observations reveal for the first time the extremely rich mid-infrared
environments of this type of source, including multiple continuum emission
components (a hot component with T > 700 K and a warm component with T ~ 180 K)
with apparent silicate absorption features, numerous HI recombination lines,
many forbidden ionic lines of low ionization potentials, and pure rotational H2
lines. This indicates that both sources have hot and warm circumstellar dust,
ionized stellar winds, extended low-density ionized regions, and
photo-dissociated regions. It appears difficult to attribute the total optical
extinction of both sources to the hot and warm dust components, which suggests
that there could be an otherwise observable colder dust component responsible
for the most of the optical extinction and silicate absorption features. The
observed mid-infrared spectra are similar to those from Luminous Blue
Variables, indicating that the highly-obscured massive X-ray binaries may
represent a previously unknown evolutionary phase of X-ray binaries with
early-type optical companions. Our results highlight the importance and utility
of mid-infrared spectroscopy to investigate highly-obscured X-ray binaries.Comment: To appear in ApJ Letter
- …
