11 research outputs found

    IL-1β Promotes TGF-β1 and IL-2 Dependent Foxp3 Expression in Regulatory T Cells

    Get PDF
    Earlier, we have shown that GM-CSF-exposed CD8α− DCs that express low levels of pro-inflammatory cytokines IL-12 and IL-1β can induce Foxp3+ Tregs leading to suppression of autoimmunity. Here, we examined the differential effects of IL-12 and IL-1β on Foxp3 expression in T cells when activated in the presence and absence of DCs. Exogenous IL-12 abolished, but IL-1β enhanced, the ability of GM-CSF-exposed tolerogenic DCs to promote Foxp3 expression. Pre-exposure of DCs to IL-1β and IL-12 had only a modest effect on Foxp3− expressing T cells; however, T cells activated in the absence of DCs but in the presence of IL-1β or IL-12 showed highly significant increase and decrease in Foxp3+ T cell frequencies respectively suggesting direct effects of these cytokines on T cells and a role for IL-1β in promoting Foxp3 expression. Importantly, purified CD4+CD25+ cells showed a significantly higher ability to maintain Foxp3 expression when activated in the presence of IL-1β. Further analyses showed that the ability of IL-1β to maintain Foxp3 expression in CD25+ T cells was dependent on TGF-β1 and IL-2 expression in Foxp3+Tregs and CD25− effectors T cells respectively. Exposure of CD4+CD25+ T cells to IL-1β enhanced their ability to suppress effector T cell response in vitro and ongoing experimental autoimmune thyroidits in vivo. These results show that IL-1β can help enhance/maintain Tregs, which may play an important role in maintaining peripheral tolerance during inflammation to prevent and/or suppress autoimmunity

    GM-CSF-induced CD11c+CD8a—dendritic cells facilitate Foxp3+ and IL-10+ regulatory T cell expansion resulting in suppression of autoimmune thyroiditis

    No full text
    GM-CSF plays an essential role in the differentiation of dendritic cells (DCs). Our studies have shown that GM-CSF treatment can induce semi-mature DCs and CD4+CD25+ regulatory T cells (Tregs) and suppress ongoing autoimmunity in mouse models. In this study, we examined the differences in the potential of GM-CSF to exert tolerogenic function on CD8a+ and CD8a− sub-populations of DCs in vivo. We show that GM-CSF modulates CD8a−, but not CD8a+ DCs in vivo, by inhibiting the surface expression of activation markers MHC II and CD80 and production of inflammatory cytokines such as IL-12 and IL-1β. Self-antigen [mouse thyroglobulin (mTg)] presentation by GM-CSF-exposed CD8a− DCs to T cells from mTg-primed mice induced a profound increase in the frequency of forkhead box P3 (FoxP3)-expressing T cells compared with antigen presentation by GM-CSF-exposed CD8a+ DCs and control CD8a+ and CD8a− DCs. This tolerogenic property of GM-CD8a− DCs was abrogated when IL-12 was added. GM-CSF-exposed CD8a− DCs could also induce secretion of significantly higher amounts of IL-10 by T cells from mTg-primed mice. Importantly, adoptive transfer of CD8a− DCs from GM-CSF-treated SCID mice, but not untreated mice, into wild-type CBA/J mice prevented the development of experimental autoimmune thyroiditis (EAT) in the recipient animals upon immunization with mTg. Collectively, our results show that GM-CSF renders CD8a− DCs tolerogenic, and these DCs induce Foxp3+ and IL-10+ Tregs
    corecore