27 research outputs found

    DesafĂ­os polĂ­ticos de los paĂ­ses de inmigraciĂłn

    Get PDF
    13 pĂĄgs.-- Publicado en "Confluencia XXI. Revista de Pensamiento PolĂ­tico" (MĂ©xico), nÂș 3 (Oct-Dic 2008) bajo el tĂ­tulo monogrĂĄfico "Migrantes: ÂżPor quĂ© se van? ÂżPor quĂ© se quedan?".Las migraciones, una prĂĄctica tan antigua como la propia condiciĂłn humana, se han convertido en un factor estructural de primer orden, en uno de los macrofenĂłmenos mĂĄs definitorios de nuestra Ă©poca y en un complejo reto para las sociedades contemporĂĄneas. En prĂĄcticamente todos los paĂ­ses del mundo, todo lo que concierne a este complejo fenĂłmeno ocupa un lugar destacado en la agenda polĂ­tica. La gestiĂłn, el control y la integraciĂłn de los movimientos internacionales de personas se presentan como un policy field de creciente y prioritaria relevancia. No se trata, sin embargo, de una cuestiĂłn de mera moda: el nĂșmero de paĂ­ses implicados de manera significativa en las migraciones internacionales ha aumentado considerablemente, hasta el punto de que resulta realmente difĂ­cil encontrar algĂșn Estado que no sea bien un paĂ­s de inmigraciĂłn, bien un paĂ­s de emigraciĂłn o bien ambas cosas a la vez, cuando no al menos un paĂ­s de trĂĄnsito. No ha de extrañar entonces que la mayorĂ­a de los gobiernos haya tomado conciencia de la necesidad de ofrecer una respuesta en tĂ©rminos legales e institucionales a un fenĂłmeno de carĂĄcter permanente que puede llegar a alterar la estructura demogrĂĄfica, social, cultural, econĂłmica y laboral de un paĂ­s. Dada la complejidad de la cuestiĂłn, y por cuestiones de economĂ­a argumentativa, aquĂ­ se abordarĂĄ de manera fundamental desde la perspectiva de los paĂ­ses receptores, que, por lo demĂĄs, es tambiĂ©n la adoptada en forma habitual por los paĂ­ses europeos que registran mayor inmigraciĂłn. Sin embargo, el fenĂłmeno migratorio es fundamentalmente transnacional y tiene fehacientes repercusiones en los paĂ­ses de emigraciĂłn.Peer reviewe

    Fungal planet description sheets: 951–1041

    Get PDF
    Novel species of fungi described in this study include those from various countries as follows: Antarctica , Apenidiella antarctica from permafrost, Cladosporium fildesense fromanunidentifiedmarinesponge. Argentina , Geastrum wrightii onhumusinmixedforest. Australia , Golovinomyces glandulariae on Glandularia aristigera, Neoanungitea eucalyptorum on leaves of Eucalyptus grandis, Teratosphaeria corymbiicola on leaves of Corymbia ficifolia, Xylaria eucalypti on leaves of Eucalyptus radiata. Brazil, Bovista psammophila on soil, Fusarium awaxy on rotten stalks of Zea mays, Geastrum lanuginosum on leaf litter covered soil, Hermetothecium mikaniae-micranthae (incl. Hermetothecium gen. nov.)on Mikania micrantha, Penicillium reconvexovelosoi in soil, Stagonosporopsis vannaccii from pod of Glycine max. British Virgin Isles , Lactifluus guanensis onsoil. Canada , Sorocybe oblongispora on resin of Picea rubens. Chile, Colletotrichum roseum on leaves of Lapageria rosea. China, Setophoma caverna fromcarbonatiteinKarstcave. Colombia , Lareunionomyces eucalypticola on leaves of Eucalyptus grandis. Costa Rica, Psathyrella pivae onwood. Cyprus , Clavulina iris oncalcareoussubstrate. France , Chromosera ambigua and Clavulina iris var. occidentalis onsoil. French West Indies , Helminthosphaeria hispidissima ondeadwood. Guatemala , Talaromyces guatemalensis insoil. Malaysia , Neotracylla pini (incl. Tracyllales ord. nov. and Neotra- cylla gen. nov.)and Vermiculariopsiella pini on needles of Pinus tecunumanii. New Zealand, Neoconiothyrium viticola on stems of Vitis vinifera, Parafenestella pittospori on Pittosporum tenuifolium, Pilidium novae-zelandiae on Phoenix sp. Pakistan , Russula quercus-floribundae onforestfloor. Portugal , Trichoderma aestuarinum from salinewater. Russia , Pluteus liliputianus on fallen branch of deciduous tree, Pluteus spurius on decaying deciduouswoodorsoil. South Africa , Alloconiothyrium encephalarti, Phyllosticta encephalarticola and Neothyrostroma encephalarti (incl. Neothyrostroma gen. nov.)onleavesof Encephalartos sp., Chalara eucalypticola on leaf spots of Eucalyptus grandis × urophylla, Clypeosphaeria oleae on leaves of Olea capensis, Cylindrocladiella postalofficium on leaf litter of Sideroxylon inerme , Cylindromonium eugeniicola (incl. Cylindromonium gen. nov.)onleaflitterof Eugenia capensis , Cyphellophora goniomatis on leaves of Gonioma kamassi , Nothodactylaria nephrolepidis (incl. Nothodactylaria gen. nov. and Nothodactylariaceae fam. nov.)onleavesof Nephrolepis exaltata , Falcocladium eucalypti and Gyrothrix eucalypti on leaves of Eucalyptus sp., Gyrothrix oleae on leaves of Olea capensis subsp. macrocarpa , Harzia metro sideri on leaf litter of Metrosideros sp., Hippopotamyces phragmitis (incl. Hippopota- myces gen. nov.)onleavesof Phragmites australis , Lectera philenopterae on Philenoptera violacea , Leptosillia mayteni on leaves of Maytenus heterophylla , Lithohypha aloicola and Neoplatysporoides aloes on leaves of Aloe sp., Millesimomyces rhoicissi (incl. Millesimomyces gen. nov.) on leaves of Rhoicissus digitata , Neodevriesia strelitziicola on leaf litter of Strelitzia nicolai , Neokirramyces syzygii (incl. Neokirramyces gen. nov.)onleafspots o

    Fungal Planet description sheets : 951–1041

    Get PDF
    Novel species of fungi described in this study include those from various countries as follows: Antarctica,Apenidiella antarctica from permafrost, Cladosporium fildesense from an unidentified marine sponge. Argentina,Geastrum wrightii on humus in mixed forest. Australia, Golovinomyces glandulariae on Glandularia aristigera,Neoanungitea eucalyptorum on leaves of Eucalyptus grandis, Teratosphaeria corymbiicola on leaves of Corymbiaficifolia, Xylaria eucalypti on leaves of Eucalyptus radiata. Brazil, Bovista psammophila on soil, Fusarium awaxy onrotten stalks of Zea mays, Geastrum lanuginosum on leaf litter covered soil, Hermetothecium mikaniae-micranthae(incl. Hermetothecium gen. nov.) on Mikania micrantha, Penicillium reconvexovelosoi in soil, Stagonosporopsis vannacciifrom pod of Glycine max. British Virgin Isles, Lactifluus guanensis on soil. Canada, Sorocybe oblongisporaon resin of Picea rubens. Chile, Colletotrichum roseum on leaves of Lapageria rosea. China, Setophoma cavernafrom carbonatite in Karst cave. Colombia, Lareunionomyces eucalypticola on leaves of Eucalyptus grandis. CostaRica, Psathyrella pivae on wood. Cyprus, Clavulina iris on calcareous substrate. France, Chromosera ambiguaand Clavulina iris var. occidentalis on soil. French West Indies, Helminthosphaeria hispidissima on dead wood.Guatemala, Talaromyces guatemalensis in soil. Malaysia, Neotracylla pini (incl. Tracyllales ord. nov. and Neotracyllagen. nov.) and Vermiculariopsiella pini on needles of Pinus tecunumanii. New Zealand, Neoconiothyriumviticola on stems of Vitis vinifera, Parafenestella pittospori on Pittosporum tenuifolium, Pilidium novae-zelandiaeon Phoenix sp. Pakistan, Russula quercus-floribundae on forest floor. Portugal, Trichoderma aestuarinum fromsaline water. Russia, Pluteus liliputianus on fallen branch of deciduous tree, Pluteus spurius on decaying deciduous wood or soil. South Africa, Alloconiothyrium encephalarti, Phyllosticta encephalarticola and Neothyrostromaencephalarti (incl. Neothyrostroma gen. nov.) on leaves of Encephalartos sp., Chalara eucalypticola on leaf spots ofEucalyptus grandis x urophylla, Clypeosphaeria oleae on leaves of Olea capensis, Cylindrocladiella postalofficiumon leaf litter of Sideroxylon inerme, Cylindromonium eugeniicola (incl. Cylindromonium gen. nov.) on leaf litter ofEugenia capensis, Cyphellophora goniomatis on leaves of Gonioma kamassi, Nothodactylaria nephrolepidis (incl.Nothodactylaria gen. nov. and Nothodactylariaceae fam. nov.) on leaves of Nephrolepis exaltata, Falcocladiumeucalypti and Gyrothrix eucalypti on leaves of Eucalyptus sp., Gyrothrix oleae on leaves of Olea capensis subsp.macrocarpa, Harzia metro-sideri on leaf litter of Metrosideros sp., Hippopotamyces phragmitis (incl. Hippopotamycesgen. nov.) on leaves of Phragmites australis, Lectera philenopterae on Philenoptera violacea, Leptosilliamayteni on leaves of Maytenus heterophylla, Lithohypha aloicola and Neoplatysporoides aloes on leaves of Aloesp., Millesimomyces rhoicissi (incl. Millesimomyces gen. nov.) on leaves of Rhoicissus digitata, Neodevriesiastrelitziicola on leaf litter of Strelitzia nicolai, Neokirramyces syzygii (incl. Neokirramyces gen. nov.) on leaf spots of Syzygium sp., Nothoramichloridium perseae (incl. Nothoramichloridium gen. nov. and Anungitiomycetaceae fam.nov.) on leaves of Persea americana, Paramycosphaerella watsoniae on leaf spots of Watsonia sp., Penicilliumcuddlyae from dog food, Podocarpomyces knysnanus (incl. Podocarpomyces gen. nov.) on leaves of Podocarpusfalcatus, Pseudocercospora heteropyxidicola on leaf spots of Heteropyxis natalensis, Pseudopenidiella podocarpi,Scolecobasidium podocarpi and Ceramothyrium podocarpicola on leaves of Podocarpus latifolius, Scolecobasidiumblechni on leaves of Blechnum capense, Stomiopeltis syzygii on leaves of Syzygium chordatum, Strelitziomycesknysnanus (incl. Strelitziomyces gen. nov.) on leaves of Strelitzia alba, Talaromyces clemensii from rotting wood ingoldmine, Verrucocladosporium visseri on Carpobrotus edulis. Spain, Boletopsis mediterraneensis on soil, Calycinacortegadensisi on a living twig of Castanea sativa, Emmonsiellopsis tuberculata in fluvial sediments, Mollisia cortegadensison dead attached twig of Quercus robur, Psathyrella ovispora on soil, Pseudobeltrania lauri on leaf litterof Laurus azorica, Terfezia dunensis in soil, Tuber lucentum in soil, Venturia submersa on submerged plant debris.Thailand, Cordyceps jakajanicola on cicada nymph, Cordyceps kuiburiensis on spider, Distoseptispora caricis onleaves of Carex sp., Ophiocordyceps khonkaenensis on cicada nymph. USA, Cytosporella juncicola and Davidiellomycesjuncicola on culms of Juncus effusus, Monochaetia massachusettsianum from air sample, Neohelicomycesmelaleucae and Periconia neobrittanica on leaves of Melaleuca styphelioides x lanceolata, Pseudocamarosporiumeucalypti on leaves of Eucalyptus sp., Pseudogymnoascus lindneri from sediment in a mine, Pseudogymnoascusturneri from sediment in a railroad tunnel, Pulchroboletus sclerotiorum on soil, Zygosporium pseudomasonii onleaf of Serenoa repens. Vietnam, Boletus candidissimus and Veloporphyrellus vulpinus on soil. Morphological andculture characteristics are supported by DNA barcodes

    Fungal planet description sheets : 371–399

    Get PDF
    Novel species of fungi described in the present study include the following from Australia: Neoseptorioides eucalypti gen. & sp. nov. from Eucalyptus radiata leaves, Phytophthora gondwanensis from soil, Diaporthe tulliensis from rotted stem ends of Theobroma cacao fruit, Diaporthe vawdreyi from fruit rot of Psidium guajava, Magnaporthiopsis agrostidis from rotted roots of Agrostis stolonifera and Semifissispora natalis from Eucalyptus leaf litter. Furthermore, Neopestalotiopsis egyptiaca is described from Mangifera indica leaves (Egypt), Roussoella mexicana from Coffea arabica leaves (Mexico), Calonectria monticola from soil (Thailand), Hygrocybe jackmanii from littoral sand dunes (Canada), Lindgomyces madisonensis from submerged decorticated wood (USA), Neofabraea brasiliensis from Malus domestica (Brazil), Geastrum diosiae from litter (Argentina), Ganoderma wiiroense on angiosperms (Ghana), Arthrinium gutiae from the gut of a grasshopper (India), Pyrenochaeta telephoni from the screen of a mobile phone (India) and Xenoleptographium phialoconidium gen. & sp. nov. on exposed xylem tissues of Gmelina arborea (Indonesia). Several novelties are introduced from Spain, namely Psathyrella complutensis on loamy soil, Chlorophyllum lusitanicum on nitrified grasslands (incl. Chlorophyllum arizonicum comb. nov.), Aspergillus citocrescens from cave sediment and Lotinia verna gen. & sp. nov. from muddy soil. Novel foliicolous taxa from South Africa include Phyllosticta carissicola from Carissa macrocarpa, Pseudopyricularia hagahagae from Cyperaceae and Zeloasperisporium searsiae from Searsia chirindensis. Furthermore, Neophaeococcomyces is introduced as a novel genus, with two new combinations, N. aloes and N. catenatus. Several foliicolous novelties are recorded from La RĂ©union, France, namely Ochroconis pandanicola from Pandanus utilis, Neosulcatispora agaves gen. & sp. nov. from Agave vera-cruz, Pilidium eucalyptorum from Eucalyptus robusta, Strelitziana syzygii from Syzygium jambos (incl. Strelitzianaceae fam. nov.) and Pseudobeltrania ocoteae from Ocotea obtusata (Beltraniaceae emend.). Morphological and culture characteristics along with ITS DNA barcodes are provided for all taxa.http://www.ingentaconnect.com/content/nhn/pimjam2016Forestry and Agricultural Biotechnology Institute (FABI)Microbiology and Plant Patholog

    Food preference patterns in a UK twin cohort

    No full text
    Food liking-disliking patterns may strongly influence food choices and health. Here we assess: (1) whether food preference patterns are genetic/environmentally driven; and (2) the relationship between metabolomics profiles and food preference patterns in a large population of twins. 2,107 individuals from TwinsUK completed an online food and lifestyle preference questionnaire. Principle components analysis was undertaken to identify patterns of food liking-disliking. Heritability estimates for each liking pattern were obtained by structural equation modeling. The correlation between blood metabolomics profiles (280 metabolites) and each food liking pattern was assessed in a subset of 1,491 individuals and replicated in an independent subset of monozygotic twin pairs discordant for the liking pattern (65 to 88 pairs). Results from both analyses were meta-analyzed. Four major food-liking patterns were identified (Fruit and Vegetable, Distinctive Tastes, Sweet and High Carbohydrate, and Meat) accounting for 26% of the total variance. All patterns were moderately heritable (Fruit and Vegetable, h 2[95% CI]: 0.36 [0.28; 0.44]; Distinctive Tastes: 0.58 [0.52; 0.64]; Sweet and High Carbohydrate: 0.52 [0.45, 0.59] and Meat: 0.44 [0.35; 0.51]), indicating genetic factors influence food liking-disliking. Overall, we identified 14 significant metabolite associations (Bonferroni p < 4.5 × 10-5) with Distinctive Tastes (8 metabolites), Sweet and High Carbohydrate (3 metabolites), and Meat (3 metabolites). Food preferences follow patterns based on similar taste and nutrient characteristics and these groupings are strongly determined by genetics. Food preferences that are strongly genetically determined (h 2 ≄ 0.40), such as for meat and distinctive-tasting foods, may influence intakes more substantially, as demonstrated by the metabolomic associations identified here

    Biosensors for D-amino acid detection

    No full text
    The presence of d-amino acids in foods is promoted by harsh technological processes (e.g., high temperature or extreme pH values) or can be the consequence of adulteration or microbial contamination (d-amino acids are major components of the bacterial cell wall). For this reason, quality control is becoming more and more important both for the industry (as a cost factor) and for consumer protection. For routine food analysis and quality control, simple and easily applicable analytical methods are needed: biosensors can often satisfy these requirements. The use of an enzymatic, stereospecific reaction could confer selectivity to a biosensor for detecting and quantifying d-amino acids in foodstuffs. The flavoenzyme d-amino acid oxidase from the yeast Rhodotorula gracilis is an ideal biocatalyst for this kind of application because of its absolute stereospecificity, very high turnover number with various substrates, tight binding with the FAD cofactor, and broad substrate specificity. Furthermore, alterations in the local brain concentrations of d-serine (predominantly d-amino acid in the mammalian central nervous system) have been related to several neurological and psychiatric diseases. Therefore, quantifying this neuromodulator represents an important task in biological, medical, and pharmaceutical research. Recently, an enzymatic microbiosensor, also using R. gracilis d-amino acid oxidase as biocatalyst, was developed for detecting d-serine in vivo
    corecore