486 research outputs found

    Filtering data from the collaborative initial glaucoma treatment study for improved identification of glaucoma progression

    Get PDF
    Abstract Background Open-angle glaucoma (OAG) is a prevalent, degenerate ocular disease which can lead to blindness without proper clinical management. The tests used to assess disease progression are susceptible to process and measurement noise. The aim of this study was to develop a methodology which accounts for the inherent noise in the data and improve significant disease progression identification. Methods Longitudinal observations from the Collaborative Initial Glaucoma Treatment Study (CIGTS) were used to parameterize and validate a Kalman filter model and logistic regression function. The Kalman filter estimates the true value of biomarkers associated with OAG and forecasts future values of these variables. We develop two logistic regression models via generalized estimating equations (GEE) for calculating the probability of experiencing significant OAG progression: one model based on the raw measurements from CIGTS and another model based on the Kalman filter estimates of the CIGTS data. Receiver operating characteristic (ROC) curves and associated area under the ROC curve (AUC) estimates are calculated using cross-fold validation. Results The logistic regression model developed using Kalman filter estimates as data input achieves higher sensitivity and specificity than the model developed using raw measurements. The mean AUC for the Kalman filter-based model is 0.961 while the mean AUC for the raw measurements model is 0.889. Hence, using the probability function generated via Kalman filter estimates and GEE for logistic regression, we are able to more accurately classify patients and instances as experiencing significant OAG progression. Conclusion A Kalman filter approach for estimating the true value of OAG biomarkers resulted in data input which improved the accuracy of a logistic regression classification model compared to a model using raw measurements as input. This methodology accounts for process and measurement noise to enable improved discrimination between progression and nonprogression in chronic diseases.http://deepblue.lib.umich.edu/bitstream/2027.42/109450/1/12911_2013_Article_773.pd

    White Rabbit Applications for FAIR Experiments

    Get PDF

    Nucleon structure from mixed action calculations using 2+1 flavors of asqtad sea and domain wall valence fermions

    Get PDF
    We present high statistics results for the structure of the nucleon from a mixed-action calculation using 2+1 flavors of asqtad sea and domain wall valence fermions. We perform extrapolations of our data based on different chiral effective field theory schemes and compare our results with available information from phenomenology. We discuss vector and axial form factors of the nucleon, moments of generalized parton distributions, including moments of forward parton distributions, and implications for the decomposition of the nucleon spin.Comment: 68 pages, 47 figures. Main revision points: improved discussion of chiral fits and systematic uncertainties, several minor refinements. Accepted for publication in Phys.Rev.

    Transverse-Momentum Distributions and Spherical Symmetry

    Get PDF
    Transverse-momentum dependent parton distributions (TMDs) are studied in the framework of quark models. In particular, quark model relations among TMDs are reviewed and their physical origin is discussed in terms of rotational-symmetry properties of the nucleon state in its rest frame.Comment: 8 pages, 2 figures, prepared for the workshop "30 years of strong interactions", Spa, Belgium, 6-8 April 201

    The mating-specific Gα interacts with a kinesin-14 and regulates pheromone-induced nuclear migration in budding yeast

    Get PDF
    As a budding yeast cell elongates toward its mating partner, cytoplasmic microtubules connect the nucleus to the cell cortex at the growth tip. The Kar3 kinesin-like motor protein is then thought to stimulate plus-end depolymerization of these microtubules, thus drawing the nucleus closer to the site where cell fusion and karyogamy will occur. Here, we show that pheromone stimulates a microtubule-independent interaction between Kar3 and the mating-specific Gα protein Gpa1 and that Gpa1 affects both microtubule orientation and cortical contact. The membrane localization of Gpa1 was found to polarize early in the mating response, at about the same time that the microtubules begin to attach to the incipient growth site. In the absence of Gpa1, microtubules lose contact with the cortex upon shrinking and Kar3 is improperly localized, suggesting that Gpa1 is a cortical anchor for Kar3. We infer that Gpa1 serves as a positional determinant for Kar3-bound microtubule plus ends during mating. © 2009 by The American Society for Cell Biology

    Pion transverse momentum dependent parton distributions in the Nambu and Jona-Lasinio model

    Get PDF
    An explicit evaluation of the two pion transverse momentum dependent parton distributions at leading twist is presented, in the framework of the Nambu-Jona Lasinio model with Pauli-Villars regularization. The transverse momentum dependence of the obtained distributions is generated solely by the dynamics of the model. Using these results, the so called generalized Boer-Mulders shift is studied and compared with recent lattice data. The obtained agreement is very encouraging, in particular because no additional parameter has been introduced. A more conclusive comparison would require a precise knowledge of the QCD evolution of the transverse momentum dependent parton distributions under scrutiny

    Transverse Momentum Dependent Parton Distribution/Fragmentation Functions at an Electron-Ion Collider

    Get PDF
    We present a summary of a recent workshop held at Duke University on Partonic Transverse Momentum in Hadrons: Quark Spin-Orbit Correlations and Quark-Gluon Interactions. The transverse momentum dependent parton distribution functions (TMDs), parton-to-hadron fragmentation functions, and multi-parton correlation functions, were discussed extensively at the Duke workshop. In this paper, we summarize first the theoretical issues concerning the study of partonic structure of hadrons at a future electron-ion collider (EIC) with emphasis on the TMDs. We then present simulation results on experimental studies of TMDs through measurements of single spin asymmetries (SSA) from semi-inclusive deep-inelastic scattering (SIDIS) processes with an EIC, and discuss the requirement of the detector for SIDIS measurements. The dynamics of parton correlations in the nucleon is further explored via a study of SSA in D (`D) production at large transverse momenta with the aim of accessing the unexplored tri-gluon correlation functions. The workshop participants identified the SSA measurements in SIDIS as a golden program to study TMDs in both the sea and valence quark regions and to study the role of gluons, with the Sivers asymmetry measurements as examples. Such measurements will lead to major advancement in our understanding of TMDs in the valence quark region, and more importantly also allow for the investigation of TMDs in the sea quark region along with a study of their evolution.Comment: 44 pages 23 figures, summary of Duke EIC workshop on TMDs accepted by EPJ
    • …
    corecore