75 research outputs found
Prognostic significance of DAPK and RASSF1A promoter hypermethylation in non-small cell lung cancer (NSCLC).
Investigation of the role of SDHB inactivation in sporadic phaeochromocytoma and neuroblastoma
Germline mutations in the succinate dehydrogenase (SDH) (mitochondrial respiratory chain complex II) subunit B gene, SDHB, cause susceptibility to head and neck paraganglioma and phaeochromocytoma. Previously, we did not identify somatic SDHB mutations in sporadic phaeochromocytoma, but SDHB maps to 1p36, a region of frequent loss of heterozygosity (LOH) in neuroblastoma as well. Hence, to evaluate SDHB as a candidate neuroblastoma tumour suppressor gene (TSG) we performed mutation analysis in 46 primary neuroblastomas by direct sequencing, but did not identify germline or somatic SDHB mutations. As TSGs such as RASSF1A are frequently inactivated by promoter region hypermethylation, we designed a methylation-sensitive PCR-based assay to detect SDHB promoter region methylation. In 21% of primary neuroblastomas and 32% of phaeochromocytomas (32%) methylated (and unmethylated) alleles were detected. Although promoter region methylation was also detected in two neuroblastoma cell lines, this was not associated with silencing of SDHB expression, and treatment with a demethylating agent (5-azacytidine) did not increase SDH activity. These findings suggest that although germline SDHB mutations are an important cause of phaeochromocytoma susceptibility, somatic inactivation of SDHB does not have a major role in sporadic neural crest tumours and SDHB is not the target of 1p36 allele loss in neuroblastoma and phaeochromocytoma
Quantitative promoter methylation differentiates carcinoma ex pleomorphic adenoma from pleomorphic salivary adenoma
The Growth and Tumor Suppressors NORE1A and RASSF1A Are Targets for Calpain-Mediated Proteolysis
Background: NORE1A and RASSF1A are growth and tumour suppressors inactivated in a variety of cancers. Methylation of NORE1A and RASSF1A promoters is the predominant mechanism for downregulation of these proteins; however, other mechanisms are likely to exist. Methodology/Principal Findings: Here we describe a proteolysis of NORE1A and RASSF1A by calpains as alternative mechanism of their downregulation. Extracts of H358 cell line, a human bronchoalveolar carcinoma, and H460, a large cell carcinoma, were capable of proteolysis of NORE1A protein in the calpain-dependent manner. Likewise, RASSF1A tumor suppressor was proteolyzed by the H358 cell extract. Addition of calpain inhibitor to H358 and H460 cells growing in tissue culture resulted in re-expression of endogenous NORE1A. A survey of 10 human lung tumours revealed that three of them contain an activity capable of inducing NORE1A degradation. Conclusions/Significance: Thus, degradation by calpains is a novel mechanism for downregulation of NORE1A and RASSF1A proteins and might be the mechanism allowing cancer cells to escape growth suppression
SLIT2 promoter methylation analysis in neuroblastoma, Wilms' tumour and renal cell carcinoma
The 3p21.3 RASSF1A tumour suppressor gene (TSG) provides a paradigm for TSGs inactivated by promoter methylation rather than somatic mutations. Recently, we identified frequent promoter methylation without somatic mutations of SLIT2 in lung and breast cancers, suggesting similarities between SLIT2 and RASSF1A TSGs. Epigenetic inactivation of RASSF1A was first described in lung and breast cancers and subsequently in a wide range of human cancers including neuroblastoma, Wilms' tumour and renal cell carcinoma (RCC). These findings prompted us to investigate SLIT2 methylation in these three human cancers. We analysed 49 neuroblastomas (NBs), 37 Wilms' tumours and 48 RCC, and detected SLIT2 promoter methylation in 29% of NB, 38% of Wilms' tumours and 25% of RCC. Previously, we had demonstrated frequent RASSF1A methylation in the same tumour series and frequent CASP8 methylation in the NB and Wilms' tumour samples. However, there was no significant association between SLIT2 promoter methylation and RASSF1A or CASP8 methylation in NB and RCC. In Wilms' tumour, there was a trend for a negative association between RASSF1A and SLIT2 methylation, although this did not reach statistical significance. No associations were detected between SLIT2 promoter methylation and specific clinicopathological features in the tumours analysed. These findings implicate SLIT2 promoter methylation in the pathogenesis of both paediatric and adult cancers and suggest that further investigations of SLIT2 in other tumour types should be pursued. However, epigenetic inactivation of SLIT2 is less frequent than RASSF1A in the tumour types analysed
Ras-association domain family 1C protein promotes breast cancer cell migration and attenuates apoptosis
<p>Abstract</p> <p>Background</p> <p>The Ras association domain family 1 (RASSF1) gene is a Ras effector encoding two major mRNA forms, RASSF1A and RASSF1C, derived by alternative promoter selection and alternative mRNA splicing. RASSF1A is a tumor suppressor gene. However, very little is known about the function of RASSF1C both in normal and transformed cells.</p> <p>Methods</p> <p>Gene silencing and over-expression techniques were used to modulate RASSF1C expression in human breast cancer cells. Affymetrix-microarray analysis was performed using T47D cells over-expressing RASSF1C to identify RASSF1C target genes. RT-PCR and western blot techniques were used to validate target gene expression. Cell invasion and apoptosis assays were also performed.</p> <p>Results</p> <p>In this article, we report the effects of altering RASSF1C expression in human breast cancer cells. We found that silencing RASSF1C mRNA in breast cancer cell lines (MDA-MB231 and T47D) caused a small but significant decrease in cell proliferation. Conversely, inducible over-expression of RASSF1C in breast cancer cells (MDA-MB231 and T47D) resulted in a small increase in cell proliferation. We also report on the identification of novel RASSF1C target genes. RASSF1C down-regulates several pro-apoptotic and tumor suppressor genes and up-regulates several growth promoting genes in breast cancer cells. We further show that down-regulation of caspase 3 via overexpression of RASSF1C reduces breast cancer cells' sensitivity to the apoptosis inducing agent, etoposide. Furthermore, we found that RASSF1C over-expression enhances T47D cell invasion/migration <it>in vitro</it>.</p> <p>Conclusion</p> <p>Together, our findings suggest that RASSF1C, unlike RASSF1A, is not a tumor suppressor, but instead may play a role in stimulating metastasis and survival in breast cancer cells.</p
Epigenetic inactivation of the NORE1 gene correlates with malignant progression of colorectal tumors
<p>Abstract</p> <p>Background</p> <p>NORE1 (RASSF5) is a newly described member of the RASSF family with Ras effector function. <it>NORE1 </it>expression is frequently inactivated by aberrant promoter hypermethylation in many human cancers, suggesting that NORE1 might be a putative tumor suppressor. However, expression and mutation status of <it>NORE1 </it>and its implication in colorectal tumorigenesis has not been evaluated.</p> <p>Methods</p> <p>Expression, mutation, and methylation status of <it>NORE1A </it>and <it>NORE1B </it>in 10 cancer cell lines and 80 primary tumors were characterized by quantitative PCR, SSCP, and bisulfite DNA sequencing analyses. Effect of NORE1A and NORE1B expression on tumor cell growth was evaluated using cell number counting, flow cytometry, and colony formation assays.</p> <p>Results</p> <p>Expression of <it>NORE1A </it>and <it>NORE1B </it>transcript was easily detectable in all normal colonic epithelial tissues, but substantially decreased in 7 (70%) and 4 (40%) of 10 cancer cell lines and 31 (38.8%) and 25 (31.3%) of 80 primary carcinoma tissues, respectively. Moreover, 46 (57.6%) and 38 (47.5%) of 80 matched tissue sets exhibited tumor-specific reduction of <it>NORE1A </it>and <it>NORE1B</it>, respectively. Abnormal reduction of <it>NORE1 </it>was more commonly observed in advanced stage and high grade tumors compared to early and low grade tumors. While somatic mutations of the gene were not identified, its expression was re-activated in all low expressor cells after treatment with the demethylating agent 5-aza-dC. Bisulfite DNA sequencing analysis of 31 CpG sites within the promoter region demonstrated that abnormal reduction of <it>NORE1A </it>is tightly associated with promoter CpG sites hypermethylation. Moreover, transient expression and siRNA-mediated knockdown assays revealed that both NORE1A and NORE1B decrease cellular growth and colony forming ability of tumor cells and enhance tumor cell response to apoptotic stress.</p> <p><b>Conclusion</b></p> <p>Our data indicate that epigenetic inactivation of <it>NORE1 </it>due to aberrant promoter hypermethylation is a frequent event in colorectal tumorigenesis and might be implicated in the malignant progression of colorectal tumors.</p
DNA methylation patterns in bladder cancer and washing cell sediments: a perspective for tumor recurrence detection
<p>Abstract</p> <p>Background</p> <p>Epigenetic alterations are a hallmark of human cancer. In this study, we aimed to investigate whether aberrant DNA methylation of cancer-associated genes is related to urinary bladder cancer recurrence.</p> <p>Methods</p> <p>A set of 4 genes, including <it>CDH1 </it>(E-cadherin), <it>SFN </it>(stratifin), <it>RARB </it>(retinoic acid receptor, beta) and <it>RASSF1A </it>(Ras association (RalGDS/AF-6) domain family 1), had their methylation patterns evaluated by MSP (Methylation-Specific Polymerase Chain Reaction) analysis in 49 fresh urinary bladder carcinoma tissues (including 14 cases paired with adjacent normal bladder epithelium, 3 squamous cell carcinomas and 2 adenocarcinomas) and 24 cell sediment samples from bladder washings of patients classified as cancer-free by cytological analysis (control group). A third set of samples included 39 archived tumor fragments and 23 matched washouts from 20 urinary bladder cancer patients in post-surgical monitoring. After genomic DNA isolation and sodium bisulfite modification, methylation patterns were determined and correlated with standard clinic-histopathological parameters.</p> <p>Results</p> <p><it>CDH1 </it>and <it>SFN </it>genes were methylated at high frequencies in bladder cancer as well as in paired normal adjacent tissue and exfoliated cells from cancer-free patients. Although no statistically significant differences were found between <it>RARB </it>and <it>RASSF1A </it>methylation and the clinical and histopathological parameters in bladder cancer, a sensitivity of 95% and a specificity of 71% were observed for <it>RARB </it>methylation (Fisher's Exact test (p < 0.0001; OR = 48.89) and, 58% and 17% (p < 0.05; OR = 0.29) for <it>RASSF1A </it>gene, respectively, in relation to the control group.</p> <p>Conclusion</p> <p>Indistinct DNA hypermethylation of <it>CDH1 </it>and <it>SFN </it>genes between tumoral and normal urinary bladder samples suggests that these epigenetic features are not suitable biomarkers for urinary bladder cancer. However, <it>RARB </it>and <it>RASSF1A </it>gene methylation appears to be an initial event in urinary bladder carcinogenesis and should be considered as defining a panel of differentially methylated genes in this neoplasia in order to maximize the diagnostic coverage of epigenetic markers, especially in studies aiming at early recurrence detection.</p
- …
