54 research outputs found

    Generalised parton distributions of the pion in partially-quenched chiral perturbation theory

    Get PDF
    We consider the pion matrix elements of the isoscalar and isovector combinations of the vector and tensor twist-two operators that determine the moments of the various pion generalised parton distributions. Our analysis is performed using partially-quenched chiral perturbation theory. We work in the SU(2) and SU(4|2) theories and present our results at infinite volume and also at finite volume where some subtleties arise. These results are useful for extrapolations of lattice calculations of these matrix elements at small momentum transfer to the physical regime.Comment: 15 page

    A lattice calculation of the pion form factor with Ginsparg-Wilson-type fermions

    Full text link
    Results for Monte Carlo calculations of the electromagnetic vector and scalar form factors of the pion in a quenched simulation are presented. We work with two different lattice volumes up to a spatial size of 2.4 fm at a lattice spacing of 0.148 fm. The pion form factors in the space-like region are determined for pion masses down to 340 MeV.Comment: REVTeX 4, 8 pages, 9 figures, 4 tables; final versio

    Chiral symmetry and the axial nucleon to Delta(1232) transition form factors

    Full text link
    We study the momentum and the quark mass dependence of the axial nucleon to Delta(1232) transition form factors in the framework of non-relativistic chiral effective field theory to leading-one-loop order. The outcome of our analysis provides a theoretical guidance for chiral extrapolations of lattice QCD results with dynamical fermions.Comment: 18 pages, 3 figure

    A note on the QCD evolution of generalized form factors

    Full text link
    Generalized form factors of hadrons are objects appearing in moments of the generalized parton distributions. Their leading-order DGLAP-ERBL QCD evolution is exceedingly simple and the solution is given in terms of matrix triangular structures of linear equations where the coefficients are the evolution ratios. We point out that this solution has a practical importance in analyses where the generalized form factors are basic objects, e.g., the lattice-gauge studies or models. It also displays general features of their evolution.Comment: 4 page

    Baryon operators and spectroscopy in lattice QCD

    Full text link
    The construction of the operators and correlators required to determine the excited baryon spectrum is presented, with the aim of exploring the spatial and spin structure of the states while minimizing the number of propagator inversions. The method used to construct operators that transform irreducibly under the symmetries of the lattice is detailed, and the properties of example operators are studied using domain-wall fermion valence propagators computed on MILC asqtad dynamical lattices.Comment: 7 pages, 2 figures, to appear in Proceedings of Workshop on Lattice Hadron Physics 2003, Cairns, Australia, July 22 - July 30, 200

    Extracting excited states from lattice QCD: the Roper resonance

    Get PDF
    We present a new method for extracting excited states from a single two-point correlation function calculated on the lattice. Our method simply combines the correlation function evaluated at different time slices so as to ``subtract'' the leading exponential decay (ground state) and to give access to the first excited state. The method is applied to a quenched lattice study (volume = 24^3 x 64, beta = 6.2, 1/a = 2.55 GeV) of the first excited state of the nucleon using the local interpolating operator O = [uT C gamma5 d] u. The results are consistent with the identification of our extracted excited state with the Roper resonance N'(1440). The switching of the level ordering with respect to the negative-parity partner of the nucleon, N*(1535), is not seen at the simulated quark masses and, basing on crude extrapolations, is tentatively expected to occur close to the physical point.Comment: version to apper in Phys. Lett. B; additions in the presentation of the method; 3 references added; no change in the results and in the figure

    Nucleon Generalized Parton Distributions from Full Lattice QCD

    Full text link
    We present a comprehensive study of the lowest moments of nucleon generalized parton distributions in N_f=2+1 lattice QCD using domain wall valence quarks and improved staggered sea quarks. Our investigation includes helicity dependent and independent generalized parton distributions for pion masses as low as 350 MeV and volumes as large as (3.5 fm)^3, for a lattice spacing of 0.124 fm. We use perturbative renormalization at one-loop level with an improvement based on the non-perturbative renormalization factor for the axial vector current, and only connected diagrams are included in the isosinglet channel.Comment: 40 pages, 49 figures; Revised chiral extrapolations in sections A-K, main conclusions unchange

    Continuum Limit of BKB_K from 2+1 Flavor Domain Wall QCD

    Get PDF
    We determine the neutral kaon mixing matrix element BKB_K in the continuum limit with 2+1 flavors of domain wall fermions, using the Iwasaki gauge action at two different lattice spacings. These lattice fermions have near exact chiral symmetry and therefore avoid artificial lattice operator mixing. We introduce a significant improvement to the conventional NPR method in which the bare matrix elements are renormalized non-perturbatively in the RI-MOM scheme and are then converted into the MSbar scheme using continuum perturbation theory. In addition to RI-MOM, we introduce and implement four non-exceptional intermediate momentum schemes that suppress infrared non-perturbative uncertainties in the renormalization procedure. We compute the conversion factors relating the matrix elements in this family of RI-SMOM schemes and MSbar at one-loop order. Comparison of the results obtained using these different intermediate schemes allows for a more reliable estimate of the unknown higher-order contributions and hence for a correspondingly more robust estimate of the systematic error. We also apply a recently proposed approach in which twisted boundary conditions are used to control the Symanzik expansion for off-shell vertex functions leading to a better control of the renormalization in the continuum limit. We control chiral extrapolation errors by considering both the NLO SU(2) chiral effective theory, and an analytic mass expansion. We obtain B_K^{\msbar}(3 GeV) = 0.529(5)_{stat}(15)_\chi(2)_{FV}(11)_{NPR}. This corresponds to B^K=0.749(7)stat(21)χ(3)FV(15)NPR\hat{B}_K = 0.749(7)_{stat}(21)_\chi(3)_{FV}(15)_{NPR}. Adding all sources of error in quadrature we obtain B^K=0.749(27)combined\hat{B}_K = 0.749(27)_{combined}, with an overall combined error of 3.6%.Comment: 65 page

    Second moment of the pion's distribution amplitude

    Full text link
    We present preliminary results from the QCDSF/UKQCD collaborations for the second moment of the pion's distribution amplitude with two flavours of dynamical fermions. We use nonperturbatively determined renormalisation coefficients to convert our results to the MSbar scheme at 5 GeV^2. Employing a linear chiral extrapolation from our large pion masses >550 MeV, we find =0.281(28), leading to a value of a_2=0.236(82) for the second Gegenbauer moment.Comment: 6 pages, 5 figures, 1 table. To appear in: Procs. of the Workshop on Light-Cone QCD and Nonperturbative Hadron Physics 2005 (LC 2005), Cairns, Australia, 200

    Eta bound states in nuclei: a probe of flavour-singlet dynamics

    Get PDF
    We argue that eta bound states in nuclei are sensitive to the singlet component in the eta. The bigger the singlet component, the more attraction and the greater the binding. Thus, measurements of eta bound states will yield new information about axial U(1) dynamics and glue in mesons. Eta - etaprime mixing plays an important role in understanding the value of the eta-nucleon scattering length.Comment: 8 pages, version to appear in PL
    • …
    corecore