3,012 research outputs found

    Identification of H19 polymorphism for an assessment of biallelic expression

    Get PDF
    Abstract only availableAnimals produced from assisted reproductive technologies suffer from developmental abnormalities and early fetal death at a higher frequency than that observed in those produced by natural breeding. These symptoms are reminiscent of imprinting disruptions, suggesting the possibility of an alteration in the expression of imprinted genes such as biallelic expression or silencing. H19 is one of the imprinted genes first identified in mice and humans, but its imprinting status has not been determined in pigs. The objective of this study was to identify an H19 polymorphism and estimate its frequency in the commercial pig population. In this study a polymorphism in the H19 gene was identified. The PCR products contained a pooled genome with over 900 specimens to support this finding. From the positive PCR products, the DNA was cloned and transformed with a TOPO TA Cloning kit (Invitrogen). Positive colonies were identified and digested with an AciI enzyme, which cut the DNA in specific fragments that were identifiable in a gel. Analysis of the gel showed evidence that a polymorphism exists on the H19 gene.F.B. Miller Undergraduate Research Program in Animal Science

    Diagnosis and outcome of oesophageal Crohn's disease

    Get PDF
    BACKGROUND AND AIMS: Crohn's disease (CD) can involve any part of the gastrointestinal tract. We aimed to characterize clinical, endoscopic, histologic features and treatment outcomes of CD patients with oesophageal involvement. METHODS: We collected cases through a retrospective multicentre European Crohn's and Colitis Organisation CONFER [COllaborative Network For Exceptionally Rare case reports] project. Clinical data were recorded in a standardized case report form. RESULTS: A total of 40 patients were reported [22 males, mean (±SD, range) age at oesophageal CD diagnosis: 25 (±13.3, 10-71) years and mean time of follow-up: 67 (±68.1, 3-240) months]. Oesophageal involvement was established at CD diagnosis in 26 patients (65%) and during follow-up in 14. CD was exclusively located in the oesophagus in 2 patients. Thirteen patients (32.2%) were asymptomatic at oesophageal disease diagnosis. Oesophageal strictures were present in 5 patients and fistulizing oesophageal disease in one. Eight patients exhibited granulomas on biopsies. Proton-pump inhibitors (PPIs) were administered in 37 patients (92.5%). Three patients underwent endoscopic dilation for symptomatic strictures and none oesophageal-related surgery. Diagnosis in pre-established CD resulted in treatment modifications in 9/14 patients. Clinical remission of oesophageal disease was seen in 33/40 patients (82.5%) after a mean time of 7 (±5.6, 1-18) months. Follow-up endoscopy was performed in 29/40 patients and 26/29 (89.7%) achieved mucosal healing. CONCLUSION: In this case series the endoscopic and histologic characteristics of isolated oesophageal CD were similar to those reported in other sites of involvement. Treatment was primarily conservative, with PPIs administered in the majority of patients and modifications in pre-existing IBD-related therapy occurring in two thirds of them. Clinical and endoscopic remission was achieved in more than 80% of the patients.info:eu-repo/semantics/publishedVersio

    The First Ultra-cool Brown Dwarf Discovered by the Wide-field Infrared Survey Explorer

    Get PDF
    We report the discovery of the first new ultra-cool brown dwarf (BDs) found with the Wide-field Infrared Survey Explorer (WISE). The object’s preliminary designation is WISEPC J045853.90+643451.9. Follow-up spectroscopy with the LUCIFER instrument on the Large Binocular Telescope indicates that it is a very late-type T dwarf with a spectral type approximately equal to T9. Fits to an IRTF/SpeX 0.8–2.5 μm spectrum to the model atmospheres of Marley and Saumon indicate an effective temperature of approximately 600 K as well as the presence of vertical mixing in its atmosphere. The new BD is easily detected by WISE, with a signal-to-noise ratio of ~36 at 4.6 μm. Current estimates place it at a distance of 6–10 pc. This object represents the first in what will likely be hundreds of nearby BDs found by WISE that will be suitable for follow-up observations, including those with the James Webb Space Telescope. One of the two primary scientific goals of the WISE mission is to find the coolest, closest stars to our Sun; the discovery of this new BD proves that WISE is capable of fulfilling this objective

    Extinction Maps Toward The Milky Way Bulge: Two-Dimensional And Three-Dimensional Tests With APOGEE

    Get PDF
    Galactic interstellar extinction maps are powerful and necessary tools for Milky Way structure and stellar population analyses, particularly toward the heavily reddened bulge and in the midplane. However, due to the difficulty of obtaining reliable extinction measures and distances for a large number of stars that are independent of these maps, tests of their accuracy and systematics have been limited. Our goal is to assess a variety of photometric stellar extinction estimates, including both two-dimensional and three-dimensional extinction maps, using independent extinction measures based on a large spectroscopic sample of stars toward the Milky Way bulge. We employ stellar atmospheric parameters derived from high-resolution H-band Apache Point Observatory Galactic Evolution Experiment (APOGEE) spectra, combined with theoretical stellar isochrones, to calculate line-of-sight extinction and distances for a sample of more than 2400 giants toward the Milky Way bulge. We compare these extinction values to those predicted by individual near-IR and near+mid-IR stellar colors, two-dimensional bulge extinction maps, and three-dimensional extinction maps. The long baseline, near+mid-IR stellar colors are, on average, the most accurate predictors of the APOGEE extinction estimates, and the two-dimensional and three-dimensional extinction maps derived from different stellar populations along different sightlines show varying degrees of reliability. We present the results of all of the comparisons and discuss reasons for the observed discrepancies. We also demonstrate how the particular stellar atmospheric models adopted can have a strong impact on this type of analysis, and discuss related caveats.NSF Astronomy & Astrophysics Postdoctoral Fellowship AST-1203017Physics Frontier Center/Joint Institute for Nuclear Astrophysics (JINA) PHY 08-22648U.S. National Science FoundationAlfred P. Sloan FoundationParticipating InstitutionsU.S. Department of Energy Office of Science ANR-12-BS05-0015-01Astronom

    Nitrate and nitrite variability at the seafloor of an oxygen minimum zone revealed by a novel microfluidic in-situ chemical sensor

    Get PDF
    Microfluidics, or lab-on-a-chip (LOC) is a promising technology that allows the development of miniaturized chemical sensors. In contrast to the surging interest in biomedical sciences, the utilization of LOC sensors in aquatic sciences is still in infancy but a wider use of such sensors could mitigate the undersampling problem of ocean biogeochemical processes. Here we describe the first underwater test of a novel LOC sensor to obtain in situ calibrated time-series (up to 40 h) of nitrate+nitrite (ΣNOx) and nitrite on the seafloor of the Mauritanian oxygen minimum zone, offshore Western Africa. Initial tests showed that the sensor successfully reproduced water column (160 m) nutrient profiles. Lander deployments at 50, 100 and 170 m depth indicated that the biogeochemical variability was high over the Mauritanian shelf: The 50 m site had the lowest ΣNOx concentration, with 15.2 to 23.4 μM (median=18.3 μM); while at the 100 site ΣNOx varied between 21.0 and 30.1 μM over 40 hours (median = 25.1μM). The 170 m site had the highest median ΣNOx level (25.8 μM) with less variability (22.8 to 27.7 μM). At the 50 m site, nitrite concentration decreased fivefold from 1 to 0.2 μM in just 30 hours accompanied by decreasing oxygen and increasing nitrate concentrations. Taken together with the time series of oxygen, temperature, pressure and current velocities, we propose that the episodic intrusion of deeper waters via cross-shelf transport leads to intrusion of nitrate-rich, but oxygen-poor waters to shallower locations, with consequences for benthic nitrogen cycling. This first validation of an LOC sensor at elevated water depths revealed that when deployed for longer periods and as a part of a sensor network, LOC technology has the potential to contribute to the understanding of the benthic biogeochemical dynamics

    Target Selection for the SDSS-IV APOGEE-2 Survey

    Full text link
    APOGEE-2 is a high-resolution, near-infrared spectroscopic survey observing roughly 300,000 stars across the entire sky. It is the successor to APOGEE and is part of the Sloan Digital Sky Survey IV (SDSS-IV). APOGEE-2 is expanding upon APOGEE's goals of addressing critical questions of stellar astrophysics, stellar populations, and Galactic chemodynamical evolution using (1) an enhanced set of target types and (2) a second spectrograph at Las Campanas Observatory in Chile. APOGEE-2 is targeting red giant branch (RGB) and red clump (RC) stars, RR Lyrae, low-mass dwarf stars, young stellar objects, and numerous other Milky Way and Local Group sources across the entire sky from both hemispheres. In this paper, we describe the APOGEE-2 observational design, target selection catalogs and algorithms, and the targeting-related documentation included in the SDSS data releases.Comment: 19 pages, 6 figures. Accepted to A
    corecore