640 research outputs found

    DASA:an open-source design, analysis and simulation framework for automotive image-based control systems

    Get PDF
    Image-Based Control (IBC) systems are a class of data-intensive feedback control systems whose feedback is provided by image-based sensing using a camera. IBC has become popular with the advent of efficient image processing systems and low-cost CMOS cameras with high resolution. The combination of the camera and image processing (sensing) gives necessary information on parameters such as relative position, geometry, relative distance, depth perception and tracking of the object-of-interest. This enables the effective use of low-cost camera sensors to enable new functionality or replace expensive sensors in cost-sensitive industries like automotive.The state-of-the-art design, analysis, and simulation of IBC assumes that the sensing algorithm is executing correctly with an assumed or estimated worst-case delay. The sensing algorithm is simulated and validated using static pre-captured image streams and is normally decoupled from the control algorithm. However, in reality, the camera is fixed to the vehicle body and any steering change would affect the region captured by the image. This dynamism cannot be captured in a static image stream and a dynamic image stream that considers the change in vehicle dynamics due to IBC actuation is needed.We present an open-source design, analysis, and simulation framework for automotive IBC systems that can consider the change in vehicle dynamics in real-time and produces real-time dynamic image stream as per the control algorithm. Our framework models the 3D environment in 3ds Max, simulates the vehicle dynamics, camera position, environment and traffic in V-REP and computes the control output in Matlab. Our framework runs Matlab as a server and V-REP as a client in synchronous mode. We show the effectiveness of our framework using a vision-based lateral control system.<br/

    Konsepsi Mahasiswa Tentang Cepat Rambat Gelombang Pada Permukaan Air

    Get PDF
    Salah satu fenomena fisika yang paling dekat dengan kita adalah gelombang mekanis seperti gelombang pada permukaan air. Parameter-parameter penting seperti kecepatan rambat, panjang gelombang, frekuensi, amplitudo, dan media perambatan sering dikaitkan berdasarkan konsepsi sederhana sehingga berpotensi terjadinya miskonsepsi. Penelitian ini bertujuan untuk mengetahui konsepsi mahasiswa tentang cepat rambat gelombang pada permukaan air. Sebanyak 53 mahasiswa tahun pertama pada program studi Pendidikan Matematika dan Pendidikan Fisika yang telah mengikuti mata kuliah fisika dasar dijadikan sampel uji tes diagnostik. Ditemukan bahwa lebih dari 80% sampel secara konsisten mengalami miskonsepsi tentang kecepatan rambat gelombang

    Reduced life span of anergic self-reactive B cells in a double-transgenic model.

    Full text link

    How Subtle Changes Can Make a Difference – Reproducibility in Complex Supramolecular Systems

    Get PDF
    The desire to construct complex molecular systems is driven by the need for technological (r)evolution and our intrinsic curiosity to comprehend the origin of life. Supramolecular chemists tackle this challenge by combining covalent and noncovalent reactions leading to multicomponent systems with emerging complexity. However, this synthetic strategy often coincides with difficult preparation protocols and a narrow window of suitable conditions. Here, we report on unsuspected observations of our group that highlight the impact of subtle “irregularities” on supramolecular systems. Based on the effects of pathway complexity, minute amounts of water in organic solvents or small impurities in the supramolecular building block, we discuss potential pitfalls in the study of complex systems. This article is intended to draw attention to often overlooked details and to initiate an open discussion on the importance of reporting experimental details to increase reproducibility in supramolecular chemistry

    High affinity germinal center B cells are actively selected into the plasma cell compartment

    Get PDF
    A hallmark of T cell–dependent immune responses is the progressive increase in the ability of serum antibodies to bind antigen and provide immune protection. Affinity maturation of the antibody response is thought to be connected with the preferential survival of germinal centre (GC) B cells that have acquired increased affinity for antigen via somatic hypermutation of their immunoglobulin genes. However, the mechanisms that drive affinity maturation remain obscure because of the difficulty in tracking the affinity-based selection of GC B cells and their differentiation into plasma cells. We describe a powerful new model that allows these processes to be followed as they occur in vivo. In contrast to evidence from in vitro systems, responding GC B cells do not undergo plasma cell differentiation stochastically. Rather, only GC B cells that have acquired high affinity for the immunizing antigen form plasma cells. Affinity maturation is therefore driven by a tightly controlled mechanism that ensures only antibodies with the greatest possibility of neutralizing foreign antigen are produced. Because the body can sustain only limited numbers of plasma cells, this “quality control” over plasma cell differentiation is likely critical for establishing effective humoral immunity

    B Cell Receptor–independent Stimuli Trigger Immunoglobulin (Ig) Class Switch Recombination and Production of IgG Autoantibodies by Anergic Self-Reactive B Cells

    Get PDF
    In both humans and animals, immunoglobulin (Ig)G autoantibodies are less frequent but more pathogenic than IgM autoantibodies, suggesting that controls over Ig isotype switching are required to reinforce B cell self-tolerance. We have used gene targeting to produce mice in which hen egg lysozyme (HEL)-specific B cells can switch to all Ig isotypes (SWHEL mice). When crossed with soluble HEL transgenic (Tg) mice, self-reactive SWHEL B cells became anergic. However, in contrast to anergic B cells from the original nonswitching anti-HEL × soluble HEL double Tg model, self-reactive SWHEL B cells also displayed an immature phenotype, reduced lifespan, and exclusion from the splenic follicle. These differences were not related to their ability to Ig class switch, but instead to competition with non-HEL–binding B cells generated by VH gene replacement in SWHEL mice. When activated in vitro with B cell receptor (BCR)-independent stimuli such as anti-CD40 monoclonal antibody plus interleukin 4 or lipopolysaccharide (LPS), anergic SWHEL double Tg B cells proliferated and produced IgG anti-HEL antibodies as efficiently as naive HEL-binding B cells from SWHEL Ig Tg mice. These results demonstrate that no intrinsic constraints to isotype switching exist in anergic self-reactive B cells. Instead, production of IgG autoantibodies is prevented by separate controls that reduce the likelihood of anergic B cells encountering BCR-independent stimuli. That bacteria-derived LPS could circumvent these controls may explain the well-known association between autoantibody-mediated diseases and episodes of systemic infection

    Status of the superconducting 217 MHz CH-cavity

    Get PDF
    • …
    corecore