165 research outputs found

    Schwarz type preconditioners for the neutron diffusion equation

    Full text link
    [EN] Domain decomposition is a mature methodology that has been used to accelerate the convergence of partial differential equations. Even if it was devised as a solver by itself, it is usually employed together with Krylov iterative methods improving its rate of convergence, and providing scalability with respect to the size of the problem. In this work, a high order finite element discretization of the neutron diffusion equation is considered. In this problem the preconditioning of large and sparse linear systems arising from a source driven formulation becomes necessary due to the complexity of the problem. On the other hand, preconditioners based on an incomplete factorization are very expensive from the point of view of memory requirements. The acceleration of the neutron diffusion equation is thus studied here by using alternative preconditioners based on domain decomposition techniques inside Schur complement methodology. The study considers substructuring preconditioners, which do not involve overlapping, and additive Schwarz preconditioners, where some overlapping between the subdomains is taken into account. The performance of the different approaches is studied numerically using two-dimensional and three-dimensional problems. It is shown that some of the proposed methodologies outperform incomplete LU factorization for preconditioning as long as the linear system to be solved is large enough, as it occurs for three-dimensional problems. They also outperform classical diagonal Jacobi preconditioners, as long as the number of systems to be solved is large enough in such a way that the overhead of building the pre-conditioner is less than the improvement in the convergence rate. (C) 2016 Elsevier B.V. All rights reserved.The work has been partially supported by the spanish Ministerio de EconomĂ­a y Competitividad under projects ENE 2014-59442-P and MTM2014-58159-P, the Generalitat Valenciana under the project PROMETEO II/2014/008 and the Universitat PolitĂšcnica de ValĂšncia under the project FPI-2013. The work has also been supported partially by the Swedish Research Council (VR-VetenskapsrĂ„det) within a framework grant called DREAM4SAFER, research contract C0467701.Vidal-FerrĂ ndiz, A.; GonzĂĄlez Pintor, S.; Ginestar Peiro, D.; VerdĂș MartĂ­n, GJ.; DemaziĂšre, C. (2017). Schwarz type preconditioners for the neutron diffusion equation. Journal of Computational and Applied Mathematics. 309:563-574. https://doi.org/10.1016/j.cam.2016.02.056S56357430

    Comparison of some Reduced Representation Approximations

    Full text link
    In the field of numerical approximation, specialists considering highly complex problems have recently proposed various ways to simplify their underlying problems. In this field, depending on the problem they were tackling and the community that are at work, different approaches have been developed with some success and have even gained some maturity, the applications can now be applied to information analysis or for numerical simulation of PDE's. At this point, a crossed analysis and effort for understanding the similarities and the differences between these approaches that found their starting points in different backgrounds is of interest. It is the purpose of this paper to contribute to this effort by comparing some constructive reduced representations of complex functions. We present here in full details the Adaptive Cross Approximation (ACA) and the Empirical Interpolation Method (EIM) together with other approaches that enter in the same category

    A Reduced Order Approach for the Embedded Shifted Boundary FEM and a Heat Exchange System on Parametrized Geometries

    Get PDF
    A model order reduction technique is combined with an embedded boundary finite element method with a POD-Galerkin strategy. The proposed methodology is applied to parametrized heat transfer problems and we rely on a sufficiently refined shape-regular background mesh to account for parametrized geometries. In particular, the employed embedded boundary element method is the Shifted Boundary Method (SBM), recently proposed in Main and Scovazzi, J Comput Phys [17]. This approach is based on the idea of shifting the location of true boundary conditions to a surrogate boundary, with the goal of avoiding cut cells near the boundary of the computational domain. This combination of methodologies has multiple advantages. In the first place, since the Shifted Boundary Method always relies on the same background mesh, there is no need to update the discretized parametric domain. Secondly, we avoid the treatment of cut cell elements, which usually need particular attention. Thirdly, since the whole background mesh is considered in the reduced basis construction, the SBM allows for a smooth transition of the reduced modes across the immersed domain boundary. The performances of the method are verified in two dimensional heat transfer numerical examples

    A Two-Step Certified Reduced Basis Method

    Get PDF
    In this paper we introduce a two-step Certified Reduced Basis (RB) method. In the first step we construct from an expensive finite element “truth” discretization of dimension N an intermediate RB model of dimension Nâ‰ȘN . In the second step we construct from this intermediate RB model a derived RB (DRB) model of dimension M≀N. The construction of the DRB model is effected at cost O(N) and in particular at cost independent of N ; subsequent evaluation of the DRB model may then be effected at cost O(M) . The DRB model comprises both the DRB output and a rigorous a posteriori error bound for the error in the DRB output with respect to the truth discretization. The new approach is of particular interest in two contexts: focus calculations and hp-RB approximations. In the former the new approach serves to reduce online cost, Mâ‰ȘN: the DRB model is restricted to a slice or subregion of a larger parameter domain associated with the intermediate RB model. In the latter the new approach enlarges the class of problems amenable to hp-RB treatment by a significant reduction in offline (precomputation) cost: in the development of the hp parameter domain partition and associated “local” (now derived) RB models the finite element truth is replaced by the intermediate RB model. We present numerical results to illustrate the new approach.United States. Air Force Office of Scientific Research (AFOSR Grant number FA9550-07-1-0425)United States. Department of Defense. Office of the Secretary of Defense (OSD/AFOSR Grant number FA9550-09-1-0613)Norwegian University of Science and Technolog

    Reduced basis approximation and a posteriori error estimation for the time-dependent viscous Burgers’ equation

    Get PDF
    In this paper we present rigorous a posteriori L 2 error bounds for reduced basis approximations of the unsteady viscous Burgers’ equation in one space dimension. The a posteriori error estimator, derived from standard analysis of the error-residual equation, comprises two key ingredients—both of which admit efficient Offline-Online treatment: the first is a sum over timesteps of the square of the dual norm of the residual; the second is an accurate upper bound (computed by the Successive Constraint Method) for the exponential-in-time stability factor. These error bounds serve both Offline for construction of the reduced basis space by a new POD-Greedy procedure and Online for verification of fidelity. The a posteriori error bounds are practicable for final times (measured in convective units) T≈O(1) and Reynolds numbers Îœ[superscript −1]≫1; we present numerical results for a (stationary) steepening front for T=2 and 1≀Μ[superscript −1]≀200.United States. Air Force Office of Scientific Research (AFOSR Grant FA9550-05-1-0114)United States. Air Force Office of Scientific Research (AFOSR Grant FA-9550-07-1-0425)Singapore-MIT Alliance for Research and Technolog

    Injuries at a Canadian National Taekwondo Championships: a prospective study

    Get PDF
    BACKGROUND: The purpose of this prospective study was to assess the injury rates in male and female adult Canadian Taekwondo athletes relative to total number of injuries, type and body part injured. METHODS: Subjects (219 males, 99 females) participated in the 1997 Canadian National Taekwondo Championships in Toronto, Canada. Injuries were recorded on an injury form to documents any injury seen and treatment provided by the health care team. These data were later used for this study. The injury form describes the athlete and nature, site, severity and mechanism of the injury. RESULTS: The overall rate of injuries was 62.9/1,000 athlete-exposures (A-E). The males (79.9/1,000 A-E) sustained significantly more injuries than the females (25.3/1,000 A-E). The lower extremities were the most commonly injured body region in the men (32.0 /1,000 A-E), followed by the head and neck (18.3/1,000 A-E). Injuries to the spine (neck, upper back, low back and coccyx) were the third most often injured body region in males (13.8/1,000 A-E). All injuries to the women were sustained to the lower extremities. The most common type of injury in women was the contusion (15.2/1,000 A-E). However, men's most common type of injury was the sprain (22.8/1,000 A-E) followed by joint dysfunction (13.7/1,000A-E). Concussions were only reported in males (6.9/1,000 A-E). Compared to international counterparts, the Canadian men and women recorded lower total injury rates. However, the males incurred more cerebral concussions than their American colleagues (4.7/1,000 A-E). CONCLUSIONS: Similar to what was found in previous studies, the current investigation seems to suggest that areas of particular concern for preventive measures involve the head and neck as well as the lower extremities. This is the first paper to identify spinal joint dysfunction

    Combined parameter and model reduction of cardiovascular problems by means of active subspaces and POD-Galerkin methods

    Get PDF
    In this chapter we introduce a combined parameter and model reduction methodology and present its application to the efficient numerical estimation of a pressure drop in a set of deformed carotids. The aim is to simulate a wide range of possible occlusions after the bifurcation of the carotid. A parametric description of the admissible deformations, based on radial basis functions interpolation, is introduced. Since the parameter space may be very large, the first step in the combined reduction technique is to look for active subspaces in order to reduce the parameter space dimension. Then, we rely on model order reduction methods over the lower dimensional parameter subspace, based on a POD-Galerkin approach, to further reduce the required computational effort and enhance computational efficiency

    The MateCat tool

    Get PDF
    Abstract We present a new web-based CAT tool providing translators with a professional work environment, integrating translation memories, terminology bases, concordancers, and machine translation. The tool is completely developed as open source software and has been already successfully deployed for business, research and education. The MateCat Tool represents today probably the best available open source platform for investigating, integrating, and evaluating under realistic conditions the impact of new machine translation technology on human post-editing

    Non-linear model reduction for the Navier–Stokes equations using residual DEIM method

    Get PDF
    This article presents a new reduced order model based upon proper orthogonal decomposition (POD) for solving the Navier–Stokes equations. The novelty of the method lies in its treatment of the equation's non-linear operator, for which a new method is proposed that provides accurate simulations within an efficient framework. The method itself is a hybrid of two existing approaches, namely the quadratic expansion method and the Discrete Empirical Interpolation Method (DEIM), that have already been developed to treat non-linear operators within reduced order models. The method proposed applies the quadratic expansion to provide a first approximation of the non-linear operator, and DEIM is then used as a corrector to improve its representation. In addition to the treatment of the non-linear operator the POD model is stabilized using a Petrov–Galerkin method. This adds artificial dissipation to the solution of the reduced order model which is necessary to avoid spurious oscillations and unstable solutions.A demonstration of the capabilities of this new approach is provided by solving the incompressible Navier–Stokes equations for simulating a flow past a cylinder and gyre problems. Comparisons are made with other treatments of non-linear operators, and these show the new method to provide significant improvements in the solution's accuracy

    Regulation of proteasome assembly and activity in health and disease

    Get PDF
    • 

    corecore