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Abstract

In this paper we introduce a two-step Certified Reduced Basis (RB)
method. In the first step we construct from an expensive finite element
“truth” discretization of dimension N an intermediate RB model of di-
mension N ≪ N . In the second step we construct from this intermediate
RB model a derived RB (DRB) model of dimension M ≤ N . The con-
struction of the DRB model is effected at cost O(N) and in particular
at cost independent of N ; subsequent evaluation of the DRB model may
then be effected at cost O(M). The DRB model comprises both the DRB
output and a rigorous a posteriori error bound for the error in the DRB
output with respect to the truth discretization.

The new approach is of particular interest in two contexts: focus cal-

culations and hp-RB approximations. In the former the new approach
serves to reduce online cost, M ≪ N : the DRB model is restricted to a
slice or subregion of a larger parameter domain associated with the in-
termediate RB model. In the latter the new approach enlarges the class
of problems amenable to hp-RB treatment by a significant reduction in
offline (precomputation) cost: in the development of the hp parameter
domain partition and associated “local” (now derived) RB models the fi-
nite element truth is replaced by the intermediate RB model. We present
numerical results to illustrate the new approach.

Keywords: two-step model reduction; derived reduced basis; focus calcu-
lations; hp reduced basis.

1 Introduction

The Certified Reduced Basis (RB) method is a computational and mathematical
framework for model order reduction of parameter dependent partial differential
equations (PDEs). In particular, the RB method provides rapid and certifiable
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computation of linear functional outputs — such as average field values or av-
erage fluxes — associated with the solution to the PDE for any set of input
parameter values that configure the PDE in terms of (say) applied forces, mate-
rial properties, geometry, or boundary conditions. The RB method is of interest
in two particular contexts: real-time — such as parameter estimation [23] and
optimal control [13] — and many-query — such as multiscale [3, 20] or stochas-
tic simulation [4]. In these contexts, a computational preprocessing (offline)
stage is typically justified. Early contributions to the RB methodology include
[1, 24, 25]. For a review of these as well as more recent contributions, we refer
to [26].

Given any input parameter value from a predefined parameter domain, the
RB field approximation is a Galerkin-optimal linear combination of N precom-
puted highly accurate (“truth”)N -degree-of-freedom Finite Element (FE) snap-
shots of the solution to the PDE associated with N judiciously chosen parameter
values. The RB output approximation is then evaluated as a linear functional
of the RB field approximation. When the solution depends smoothly on the
parameters an accurate RB approximation may be computed based on rather
few precomputed snapshots: N ≪ N . Moreover, a rigorous a posteriori RB
output error bound for the difference between the truth output and RB output
may also be developed.

The efficiency of the RB method in the real-time and many-query contexts is
effected through an offline-online computational strategy. The RB offline stage
comprises FE snapshot selection and computation. This stage may be expensive
— N -dependent — but is performed only once as preprocessing. The RB online
stage comprises evaluation of the RB output and RB output error bound for
any given input parameter value. This stage is inexpensive — N -independent
— and may thus be effected in real-time and many-query contexts. The keys to
the N -independent online stage are efficient construction–evaluation computa-
tional procedures that link the offline and online stages through a stored dataset
of size independent of N . These procedures also provide efficient and exhaus-
tive exploration of the parameter domain in the offline selection of optimal FE
snapshots through a Greedy sampling algorithm.

In this paper we introduce a two-step Certified RB method. In the first
step we construct from an expensive FE truth discretization of dimension N an
intermediate RB model of dimension N ≪ N . In the second step we construct
from this intermediate RB model a derived RB (DRB) model of dimension
M ≤ N . The construction of the DRB model is effected at cost O(N) and in
particular at cost independent of N ; subsequent evaluation of the DRB model
may then be effected at cost O(M). The DRB model comprises both the DRB
output and a rigorous a posteriori error bound for the error in the DRB output
with respect to the truth discretization.

The DRB model is defined over a parameter subdomain (typically a sub-
region or submanifold of the original parameter domain associated with the
underlying intermediate RB model) and hence typically M can be chosen sig-
nificantly smaller than N ; the DRB model thus enables an additional speedup.
The key innovations of this paper are efficient DRB precomputation — the con-
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struction cost of the DRB model is N -independent — and rigorous and efficient
a posteriori bounds for the error in the DRB approximation — the error may
be bounded rigorously with respect to the N -complexity FE truth at evaluation
cost independent of N and N .

The notion of two-step model order reduction has been considered in earlier
works, albeit in different contexts and with different emphasis than our approach
here. In [29], a “Fourier model reduction method” for large (non-parametric)
control problems is presented. The Fourier method is first applied to the orig-
inal equation in order to construct an “intermediate order” reduced system; a
computationally more intensive reduction method, such as balanced truncation
[22], may then be applied to this intermediate order system. A two-step strategy
is also pursued in [18], where a Krylov subspace method is followed by balanced
truncation in the context of circuit component design.

In this paper, we consider parametric model order reduction in two contexts
in which our new approach is of particular interest:

Focus calculations. We consider the case in which we require many (or real-
time) RB output evaluations in a parameter subdomain or submanifold D′ ⊂ D.
For an accurate approximation over this smaller parameter subdomain, a smaller
DRB model may be sufficient and hence provide faster output computation
compared to the standard RB alternative. Applications include parameter es-
timation and in particular Bayesian inference [23] and frequentistic validation
[14], as well as visualization or indeed design or optimization of an RB output
or RB error bound over a 1-parameter or 2-parameter slice of the full parameter
domain.

hp-RB approximation. The hp-RB method was recently introduced in [7].
This approach provides an online speedup of the RB approximation through an
optimal and automatic partition (h-refinement) of the full parameter domain D
into K parameter subdomains Vk ⊂ D, 1 ≤ k ≤ K. A standard RB model of
dimension Nk is then constructed for each parameter subdomain (p-refinement);
presumably we may choose Nk ≪ N since each “local” approximation space
is invoked for a smaller range of parameter values. However, although the
online speedup associated with an hp-RB approximation may be significant, the
offline cost can be rather large: the dimension reduction effected within each
subdomain does not balance the number of parameter subdomains in terms of
total offline computational cost. Thus, in particular, the hp-RB offline stage
requires Ntotal =

∑K
k=1 N

k > N truth FE snapshot computations in total.
With the new two-step approach introduced in this paper, we replace the

Ntotal expensive offline FE truth snapshot computations in the hp-RB offline
stage with much less expensive RB snapshot approximations; we then replace
the standard RB model associated with each parameter subdomain by a DRB
model. Through this hp-DRB approach, we may significantly reduce the hp-
RB offline cost and hence broaden the class of problems amenable to hp-RB
treatment. We include a summary of the hp-RB method in Section 5.1.
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We may also pursue a mixed approach (for focus calculations or hp-RB
approximations), in which the underlying intermediate RB model is in fact an
hp-RB model. However, in particular with an hp-DRB approach, there is in
this case a delicate balance in the offline stage between additional FE snapshot
computations (for the underlying hp-RB model) and faster hp-RB snapshot
computation (for the DRB models). We do not consider this mixed approach
further in this paper.

The paper is organized as follows. We introduce in Section 2 the problem
statement as well as notation required later; we also introduce two model prob-
lems to which we shall apply the new method. We introduce in Section 3 the
new two-step approximation scheme; we discuss the (Greedy) construction of
the RB and DRB approximation spaces, a posteriori error estimation, and the
associated (construction-evaluation) computational procedures. We consider in
Section 4 and Section 5 the new approach in the context of focus calculations
and in the context of hp-RB approximations, respectively. In each context we
discuss the associated offline-online computational decoupling, and we present
numerical results for our two model problems; for all our numerical results we
use rbOOmit [21], which is an RB plugin for the open source FE library libMesh

[19]. Finally, in Section 6, we summarize the paper and discuss some areas of
future work.

2 Problem Statement

2.1 Abstract Framework

We consider linear elliptic second order partial differential equations. For sim-
plicity in the exposition of our approach we consider the formulation only for
real-valued fields, however the extension to complex fields is straightforward and
in fact in our second model problem (Helmholtz acoustic horn) we present results
for this complex case. We introduce the spatial domain Ω ⊂ R

d (d = 1, 2, 3); we
shall denote a particular spatial point x ∈ Ω as x = (x(1), . . . , x(d)). We further
specify the function spaces L2(Ω) = {v :

∫

Ω
v2 <∞}, H1(Ω) = {|∇v| ∈ L2(Ω)},

and H1
0 (Ω) = {v ∈ H1(Ω), v|∂Ω = 0}; we then introduce the space Xe associated

with the exact solutions of the parametrized PDE as H1
0 (Ω) ⊆ Xe ⊆ H1(Ω).

We next introduce a parameter domain D ⊂ R
P ; we shall denote a particular

parameter value µ ∈ D as µ = (µ(1), . . . , µ(P )).
We next introduce a parametrized bilinear form a and a parametrized linear

functional f such that for any parameter value µ ∈ D, a(·, ·;µ) : Xe ×Xe → R

is coercive and continuous over Xe, and f(·;µ) : Xe → R is bounded over Xe.
We also introduce an Xe-bounded linear output functional ℓ : Xe → R which
we for simplicity assume is parameter independent. We shall further assume
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that a and f admit parametrically affine expansions

a(·, ·;µ) =

Qa∑

q=1

aq(·, ·)Θq
a(µ), (2.1)

f(·;µ) =

Qf∑

q=1

fq(·)Θq
f (µ), (2.2)

respectively, where Qa ≤ Q, Qf ≤ Q, and Q is finite and relatively small. The
assumptions (2.1) and (2.2) accommodate the construction-evaluation compu-
tational procedures which we shall discuss in detail in Section 3.4. However,
we note that these assumptions may be relaxed by the Empirical Interpola-
tion Method [2, 5, 10], which in the non-affine case serves to construct affine
expansions that are good approximations to the non-affine forms.

We denote by µ̄ ∈ D a fixed “reference” parameter value; we then introduce
the X-inner product and the associated X-norm for any v, w ∈ Xe as

(w, v)X =
1

2
(a(w, v; µ̄) + a(v, w; µ̄)), ‖v‖X =

√

(v, v)X , (2.3)

respectively (more generally we may consider any inner product with induced
norm equivalent to ‖ · ‖X). We further introduce the coercivity and continuity
constants of a,

αe(µ) = inf
v∈Xe

a(v, v;µ)

‖v‖2
X

, γe(µ) = sup
v∈Xe

sup
w∈Xe

a(v, w;µ)

‖v‖X‖w‖X
, (2.4)

respectively.
We may now introduce the abstract formulation of the exact problem. Given

any parameter value µ ∈ D, find ue(µ) ∈ Xe such that

a(ue(µ), v;µ) = f(v;µ), ∀v ∈ Xe, (2.5)

and then evaluate the exact output of interest as

se(µ) = ℓ(ue(µ)). (2.6)

We next introduce a high-fidelity truth FE approximation space X ≡ XN ⊂
Xe of finite dimension N . We may then introduce the truth FE discretization
of (2.5)–(2.6): given any µ ∈ D, find u(µ) ∈ X such that

a(u(µ), v;µ) = f(v;µ), ∀v ∈ X, (2.7)

and then evaluate the truth output of interest as

s(µ) = ℓ(u(µ)). (2.8)

We shall assume that X is chosen rich enough (and thus N large enough)
that, for any µ ∈ D, the error between the exact solution ue(µ) and the truth
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approximation u(µ) is negligible at the desired level of numerical accuracy for
the RB approximation; the RB approximation shall be built upon, and the RB
error shall be bounded with respect to, this FE truth approximation.

We now introduce the coercivity and continuity constants of a with respect
to X,

α(µ) = inf
v∈X

a(v, v;µ)

‖v‖2
X

, γ(µ) = sup
v∈X

sup
w∈X

a(v, w;µ)

‖v‖X‖w‖X
, (2.9)

respectively; for our a posteriori error estimators, we shall also require a co-
ercivity lower bound αLB: 0 < αLB(µ) ≤ α(µ), for all µ ∈ D. An efficient
computational procedure for the computation of a coercivity lower bound is
possible through the Successive Constraint Method (SCM) [16, 17, 26].

The RB method [26] provides an acceleration of the truth (2.7)–(2.8) by the
construction of an approximation space of low dimension N ≪ N . This space
is optimized for the particular problem at hand, and thus provides accurate
approximations despite the relatively low cost. The DRB method, which is the
focus of this paper, further accelerates the RB approximation in contexts such
as focus calculations and hp-RB approximations by the construction of an ap-
proximation space derived from an intermediate RB approximation space. This
DRB approximation space is tailored to a parameter subdomain or submanifold
of the original parameter domain, and is of even lower dimension M ≤ N .

2.2 Model Problems

2.2.1 A 3D Thermal Block

We introduce here a “thermal block” linear elliptic model problem. We specify
the spatial domain (the thermal block) Ω = (0, 1)3, which is partitioned into
eight subblocks

Ω0 = (0, 0.5)× (0, 0.5)× (0, 0.5), (2.10)

Ω1 = (0.5, 1)× (0, 0.5)× (0, 0.5), (2.11)

Ω2 = (0, 0.5)× (0.5, 1)× (0, 0.5), (2.12)

Ω3 = (0.5, 1)× (0.5, 1)× (0, 0.5), (2.13)

Ω4 = (0, 0.5)× (0, 0.5)× (0.5, 1), (2.14)

Ω5 = (0.5, 1)× (0, 0.5)× (0.5, 1), (2.15)

Ω6 = (0, 0.5)× (0.5, 1)× (0.5, 1), (2.16)

Ω7 = (0.5, 1)× (0.5, 1)× (0.5, 1), (2.17)

as shown in Figure 2.1. We shall consider the nondimensionalized temperature
ue(µ) in Ω. We specify unity (inward) heat flux on the floor Γbase = {x ∈ ∂Ω :
x(3) = 0}; we specify thermal insulation ∂ue/∂n = 0 on the walls Γwall = {x ∈
∂Ω : x(1) = 0 or x(1) = 1} ∪ {x ∈ ∂Ω : x(2) = 0 or x(2) = 1} (here n denotes the
outward normal unit vector); and we specify zero temperature ue = 0 on the top
Γtop = {x ∈ ∂Ω : x(3) = 1}. We require continuity of the temperature and of
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x(1)

x(3)
x(2)Ωout

Ω0 Ω1

Ω2 Ω3

Ω4 Ω5

Ω6 Ω7

Γbase

Γtop

Γwall

Γwall

Figure 2.1: The thermal block.

the heat flux across interior boundaries. We next specify the parameter domain
D = [0.5, 2]7; the thermal conductivity in the seven subblocks Ωi, 1 ≤ i ≤ 7, is
given by µ(i), 1 ≤ i ≤ 7. The thermal conductivity in Ω0 is equal to unity.

We now specify the exact space Xe = {v ∈ H1(Ω) : v|Γtop
= 0}. We then

specify, for all µ ∈ D and for any w, v ∈ Xe, the bilinear form and linear
functional

a(w, v;µ) =

∫

Ω0

∇w · ∇v +

7∑

i=1

µ(i)

∫

Ωi

∇w · ∇v, (2.18)

f(v;µ) =

∫

Γbase

v, (2.19)

respectively. We also specify, for any v ∈ Xe, the output functional

ℓ(v) =
1

|Ωout|

∫

Ωout

v, (2.20)

where Ωout = (0, 0.25) × (0, 0.25) × (0, 0.25) and |Ωout| = 0.253 is the size
of Ωout. The exact weak formulation for the temperature ue(µ) in Ω is then
given by (2.5); the exact output se(µ) = ℓ(ue(µ)) corresponds to the average
temperature over Ωout. We note that our affine assumptions (2.1)–(2.2) hold
for Qa = 8 and Qf = 1. We choose for this problem the reference parameter
µ̄ = (1, 1, 1, 1, 1, 1, 1) ∈ R

7; thus (w, v)X =
∫

Ω
∇w · ∇v.
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a l1
2b1
l2 2b

Γo,w

2b2

Γo,R

Γo,in

Figure 2.2: The acoustic horn.

For our numerical results of Section 4.2.1 (focus calculations) and Section
5.4.1 (hp-RB approximations) we use for our truth calculations a standard P1(Ω)
FE approximation space X = XN of dimension N = 9261, which is deemed
sufficiently rich. The truth FE formulation of the problem is then given by (2.7).
We note that with our choice of inner product our problem is coercive with a
coercivity lower bound given for all µ ∈ D by αLB(µ) = min{1, µ(1), · · · , µ(7)}.
(In fact here αLB(µ) ≤ αe(µ) (≤ α(µ)).)

2.2.2 A 2D Acoustic Horn

We introduce here a Helmholtz linear elliptic model problem, first proposed in
[27]. We specify a parametrized two-dimensional domain Ωo(µ) ⊂ R

2, which
corresponds to a parameter dependent acoustic horn inside a truncated circular
domain as shown in Figure 2.2. (The subscript o denotes an “original” quantity;
for our computational procedures we consider Ωo(µ) as the image of a parameter
independent “reference” domain under a piecewise affine mapping.) The horn
consists of a straight channel of width a = 1 and length l1 = 3, followed by a
flared section of length l2 = 5. The outlet is of width 2b = 10. The expansion
channel is divided into 3 sections of equal length 5/3. The wall Γo,W of the
symmetric expansion channel is modeled as a piecewise linear function; the
heights of the sections, b1 and b2, are considered as our (geometric) parameters.
The domain is truncated at the circle Γo,R of radius R = 12.5 centered slightly
away from the outlet of the horn.
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We shall consider the nondimensionalized (complex) pressure ue
o(µ) in Ωo(µ);

in this subsection i =
√
−1. We specify a source,

∂ue
o(µ)

∂no
+ iµ(3)u

e
o(µ) = 2iµ(3),

at the inlet Γo,in; we specify a first order (Sommerfeld) radiation boundary

condition,
∂ue

o(µ)

∂no
=

(

iµ(3) +
1

2R

)

ue
o(µ), at the radiation boundary Γo,R; and

we specify a Neumann boundary condition, ∂ue
o(µ)/∂no = 0, on the horn wall

Γo,W. We next specify the parameter domain D = [1.0, 1.8] × [1.8, 2.5] × [0, 2];
we denote a particular parameter value as µ = (µ(1), µ(2), µ(3)) = (b1, b2, k) ∈ D,
where k is the nondimensional frequency or wave number.

We now define our complex space Xe
o = {v = vR+ivI : vR ∈ H1(Ωo(µ)), vI ∈

H1(Ωo(µ))}. Let v̄ denote the complex conjugate of v. We then specify, for all
µ ∈ D and for any w, v ∈ Xe

o , the sesquilinear form and anti-linear functional

ao(w, v;µ) = (1 + iǫ)

∫

Ωo(µ)

∇w · ∇v̄ − µ(3)

∫

Ωo(µ)

wv̄

+

∫

Γo,in

wv̄ +

(
1

2R
+ iµ(3)

)∫

Γo,R

wv̄, (2.21)

fo(v;µ) = 2iµ(3)

∫

Γo,in

v̄, (2.22)

respectively. Here ǫ = 0.001 represent a small dissipation in the medium. We
also specify, for any v ∈ Xe

o , the output functional

ℓo(v) =

∫

Γo,in

v̄; (2.23)

the output thus corresponds to a measurement of the pressure at the inlet Γo,in.
We then apply a domain decomposition technique (see [26]) to represent the

bilinear and linear forms in our usual affine expansions: we divide Ωo(µ) into
20 subdomains and consider each subdomain as the image of a parameter inde-
pendent “reference subdomain” under an affine transformation; we denote the
union of these reference subdomains by Ω (≡ Ωo(µ̄), where µ̄ = (1.4, 2.15, 0)).
We also introduce a space Xe such that any v ∈ Xe maps to vo ∈ Xe

o through
our piecewise affine transformation. The exact weak formulation for the pres-
sure ue(µ) ∈ Xe in the reference domain Ω is then given by a complex version
of (2.5). Furthermore, through the domain decomposition technique we obtain
complex versions of (2.1) and (2.2) for Qa = 25 and Qf = 1, respectively. We
finally define, for all w, v ∈ Xe, our X-inner product for this problem as

(w, v)X =

∫

Ω

∇w · ∇v̄ +

∫

Ω

wv̄. (2.24)

For our numerical results in Section 4.2.2 (focus calculations) and Section
5.4.2 (hp-RB approximations) we use for our truth calculations a standard P1(Ω)
FE approximation space X = XN ⊂ Xe of dimension N = 30108, which is suf-
ficiently accurate for our choice of frequency range. For purposes of illustration
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µ = [1.0, 1.8, 0.5] µ = [1.0, 2.5, 1.4] µ = [1.53, 1.8, 2.0]

Figure 2.3: The magnitude of the pressure field in Ωo(µ) for different parameter
values.

we show in Figure 2.3 three solution fields corresponding to different parameter
values.

Although with the dissipation (and radiation) condition this problem is in
fact coercive, it is preferable to consider for our a posteriori error estimators not
a coercivity constant lower bound but rather an inf-sup constant lower bound
βLB: 0 < βLB(µ) ≤ β(µ). Here,

β(µ) = inf
w∈X

sup
v∈X

|a(w, v;µ)|
‖w‖X‖v‖X

, (2.25)

for all µ ∈ D, where | · | denotes complex modulus. Typically, this positive inf-
sup lower bound is constructed by a natural norm version of the SCM procedure
[16]. However, in this paper, for simplicity1 we choose βLB to be a constant:
the minimum of the SCM lower bound over a dense set in D. Admittedly, this
choice will compromise both sharpness (since we invoke a minimum) and rigor
(since this minimum is taken over a subset of D) of our a posteriori error bound.

3 The Certified Derived Reduced Basis Method

In this section we introduce the new two-step RB method. For simplicity our
development here is for coercive linear elliptic equations with real-valued fields.
However, the extension to non-coercive equations and complex fields — required
for our Helmholtz acoustic horn model problem — is straightforward.

3.1 Derived RB approximation

We introduce the intermediate (standard) RB approximation space XN ⊂ X
of dimension N ≪ N . The space XN is spanned by solutions of (2.7) for

1The natural-norm SCM procedure in [16] has a multi-parameter domain structure different
from the multi-parameter domain structure of the hp-RB approach considered in this paper;
a streamlined merger of these approaches is the subject of future work.
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judiciously chosen (see Section 3.3) parameter values µ1 ∈ D, . . . , µN ∈ D,

XN ≡ span{u(µ1), . . . , u(µN )} ≡ span{ζ1, . . . ζN}; (3.1)

here, {ζ1, . . . , ζN} denotes an X-orthonormal basis for XN , obtained through
(say) a modified Gram-Schmidt procedure.2

We may then introduce the RB approximation: given any µ ∈ D, find
uN (µ) ∈ XN such that

a(uN (µ), v;µ) = f(v;µ), ∀v ∈ XN , (3.2)

and then evaluate the RB output approximation as

sN (µ) = ℓ(uN (µ)). (3.3)

We now introduce a parameter subdomain or submanifold D′ ⊂ D to which
the DRB model shall be specifically tailored. In the context of focus calculations,
we wish to speed up evaluation of the RB solution, RB output, and RB error
bound for any parameter value in the subdomain D′ ⊂ D; in the context of
hp-RB approximations, we wish to speedup evaluation of the RB solution, RB
output, and RB error bound for any parameter value in D through a partition
of D into many (K) subdomains Vk ⊂ D, 1 ≤ k ≤ K subdomains.3 With
regard to the hp-RB approximation, D′ denotes in this section any of the K
subdomains Vk, 1 ≤ k ≤ K; the hp-RB approximation is discussed in greater
detail in Section 5.

We introduce the DRB approximation space XN,M ⊂ XN of dimension
M ≤ N . The space XN,M is spanned by solutions of (3.2) for judiciously
chosen (see Section 3.3) parameter values µ′

1 ∈ D′, . . . , µ′
M ∈ D′,

XN,M ≡ span{uN (µ′
1), . . . , uN (µ′

M )} ≡ span{ψ1, . . . ψM}. (3.4)

Here, {ψ1, . . . , ψM} denotes anX-orthonormal basis forXN,M , obtained through
a Gram-Schmidt procedure; however we note that in practice, we shall not re-
quire the explicit (N -dependent) computation of ψ1, . . . , ψM . The computa-
tional link between the intermediate and derived RB models will be discussed
later in Section 3.4.

We may now finally introduce the DRB approximation: given any µ ∈ D′,
find uN,M (µ) ∈ XN,M such that

a(uN,M (µ), v;µ) = f(v;µ), ∀v ∈ XN,M , (3.5)

and then evaluate the DRB output approximation as

sN,M (µ) = ℓ(uN,M (µ)). (3.6)

2In the modified Gram-Schmidt procedure we compute ζ̃i = u(µi)−
∑i−1

n=1
(ζn, u(µi))Xζn,

2 ≤ i ≤ N , in an iterative fashion in order to preserve numerical stability in finite precision

as described in [8]. Here ζ1 = u(µ1)/‖u(µ1)‖X and ζi = ζ̃i

‖ζ̃i‖X
, 2 ≤ i ≤ N .

3As described in the introduction, the DRB provides an offline (and not online per se)
speedup of the hp-RB approximation. This offline speedup enlarges the class of problems
amenable to RB treatment. However, this offline speedup may also accomodate larger K —
smaller subdomains — and thus implicitly a speedup of the hp-RB online cost.
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3.2 A Posteriori Error Estimation

We first recall the a posteriori error estimator for the (standard) RB approxi-
mation [26]. We define the residual

rN (·;µ) = f(·;µ)− a(uN (µ), ·;µ) ∈ X ′; (3.7)

we then introduce the Riesz representation of the residual, RN (µ) ∈ X, which
satisfies

(RN (µ), v)X = rN (v;µ), ∀v ∈ X. (3.8)

We may then define the RB error bound as4

∆N (µ) =
‖RN (µ)‖X

αLB(µ)
. (3.9)

We may readily demonstrate that ‖u(µ) − uN (µ)‖X ≤ ∆N (µ): We first note
that the error eN (µ) = u(µ)− uN (µ) satisifes

a(eN (µ), v;µ) = rN (v;µ), ∀v ∈ X. (3.10)

We then choose v = eN (µ) and invoke (3.8) to obtain

a(eN (µ), eN (µ);µ) = (RN (µ), eN (µ))X . (3.11)

We apply coercivity to the left hand side and the Cauchy-Schwarz inequality to
the right hand side to obtain

αLB(µ)‖eN (µ)‖2
X ≤ ‖RN (µ)‖X‖eN (µ)‖X , (3.12)

from where we readily derive (3.9). We shall discuss the computation of ∆N (µ)
— in particular the dual norm of the residual ‖RN (µ)‖X — in Section 3.4;
however we note here that we may in the RB evaluation stage, for any given µ ∈
D, compute ∆N (µ) at cost O(Q2N2) — independently of the truth complexity
N .

The a posteriori error estimator for the DRB approximation is very similar.
We define the residual

rN,M (·;µ) = f(·;µ)− a(uN,M (µ), ·;µ) ∈ X ′; (3.13)

we then introduce the Riesz representation of the residual, RN,M (µ) ∈ X, which
satisfies

(RN,M (µ), v)X = rN,M (v;µ), ∀v ∈ X. (3.14)

4We note that for our Helmholtz acoustic problem the RB error bound is given as in (3.9)
with the coercivity constant lower bound αLB replaced by an inf-sup constant lower bound
βLB.
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We then define the error bound

∆N,M (µ) =
‖RN,M (µ)‖X

αLB(µ)
, (3.15)

for which we may show that ‖u(µ)− uN,M (µ)‖X ≤ ∆N (µ) by arguments anal-
ogous to (3.10)–(3.12). We emphasize that ∆N,M (µ) bounds the error in the
DRB approximation with respect to the truth upon which the intermediate RB
model is built. We shall discuss the computation of ∆N,M (µ) in detail in Sec-
tion 3.4; however we note here that we may in the DRB evaluation stage, for
any given µ ∈ D′, compute ∆N,M (µ) at cost O(Q2M2) — independently of the
truth complexity N and the RB complexity N .

For our sampling algorithm which we discuss in the next section we shall
also require a bound for the error in the DRB approximation with respect to
the intermediate RB approximation. We introduce the Riesz representation of
the DRB residual in the RB space, R̃N,M (µ) ∈ XN , which satisfies

(R̃N,M (µ), v)X = rN,M (v), ∀v ∈ XN . (3.16)

We then define the error bound

∆̃N,M (µ) =
‖R̃N,M (µ)‖X

αLB(µ)
; (3.17)

for which we may show that ‖uN (µ) − uN,M (µ)‖X ≤ ∆̃N,M (µ) by arguments
analogous to (3.10)–(3.12).

Finally, we note that we may readily develop error bounds for the RB (or
DRB) output approximation. For example, for any µ ∈ D,

|s(µ)− sN,M (µ)| = |ℓ(u(µ)− uN,M (µ))| (3.18)

≤ sup
v∈X

ℓ(v)

‖v‖X
‖u(µ)− uN,M (µ)‖X (3.19)

≤ ‖ℓ‖X′∆N,M (µ). (3.20)

3.3 Greedy Parameter Sampling

For the construction of both the intermediate RB space XN and the DRB space
XN,M , we invoke a Greedy parameter sampling procedure [26, 28], which we
now discuss.

We first consider the construction of the intermediate RB approximation
space. We introduce a training set ΞD

train ⊂ D of finite cardinality |ΞD
train|

which shall serve as a computational surrogate for D. We then introduce as
Algorithm 1 the GreedyRB sampling procedure. For a specified tolerance ǫRB

tol

and an initial parameter value µ1 ∈ D, Algorithm 1 returns a space XNmax
⊂ X

of dimension Nmax such that ∆Nmax
(µ) ≤ ǫRB

tol for all µ ∈ ΞD
train. We typically

choose ΞD
train “dense” and hence we may anticipate that ∆Nmax

(µ) ≤ ǫRB
tol for

most µ ∈ D. We note that due to the hierarchical structure of the spaces —
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Algorithm 1 XNmax
= GreedyRB(µ1, ǫ

RB
tol )

N ← 1
XN = span{u(µN )}
ǫmax

N = maxµ∈ΞD

train
∆N (µ)

while ǫmax
N > ǫRB

tol do

N ← N + 1
µN = arg maxµ∈ΞD

train
∆N−1(µ)

XN = XN−1 ⊕ span{u(µN )}
ǫmax

N = maxµ∈ΞD

train
∆N (µ)

end while

Nmax = N

Algorithm 2 XN,Mmax
= GreedyDRB(µ′

1, N, ǫ
DRB
tol )

M ← 1
XN,M = span{u(µ′

M )}
ǫmax

N,M = maxµ∈ΞD′

train

∆̃N,M (µ)

while ǫmax
N,M > ǫDRB

tol do

M ←M + 1
µ′

M = arg maxµ∈ΞD′

train

∆̃N,M−1(µ)

XN,M = XN,M−1 ⊕ span{uN (µ′
M )}

ǫmax
M = maxµ∈ΞD′

train

∆̃N,M (µ)

end while

Mmax = M

14



X1 ⊂ · · · ⊂ XNmax
— we may readily extract spaces of dimension N < Nmax

from XNmax
.

We next consider the construction of the DRB approximation space. We
introduce a training set ΞD

′

train ⊂ D′ (⊂ D) of finite cardinality |ΞD
′

train| which shall
serve as our computational surrogate for D′. We then introduce as Algorithm 2
the GreedyDRB sampling procedure. For a specified tolerance ǫDRB

tol , a desired
intermediate RB space (upon which the DRB space is built) dimension N ≤
Nmax, and an initial parameter value µ′

1 ∈ D′, Algorithm 2 returns a space
XN,Mmax

⊆ XN of dimension Mmax ≤ N such that ∆̃N,Mmax
(µ) ≤ ǫDRB

tol for

all µ ∈ ΞD
′

train. We note that due to the hierarchical structure of the spaces —
XN,1 ⊂ · · · ⊂ X1,Mmax

— we may readily extract spaces of dimensionM < Mmax

from XN,Mmax
. We emphasize that Algorithm 2 is identical to Algorithm 1

except for the procedures for snapshot computation and error bound evaluation.
We note that in Algorithm 2 we invoke the error bound (3.17) with respect

to the intermediate RB approximation in order to ensure convergence of the
algorithm: the maximum error bound ǫmax

N,M → 0 as M → N and hence any

specified tolerance ǫDRB
tol > 0 will eventually be satisfied. We also note that, for

any µ ∈ ΞD
′

train, the error in the DRB approximation with respect to the truth
can be bounded as

‖u(µ)− uN,M (µ)‖X ≤ ‖u(µ)− uN (µ)‖X + ‖uN (µ)− uN,M (µ)‖X

≤ ∆N (µ) + ∆̃N,M (µ) ≤ ǫmax
N + ǫmax

N,M . (3.21)

However, we can not reduce the term ǫmax
N since we increase only M (and not

N) during the GreedyDRB sampling procedure. As a result we typically choose
in practice ǫDRB

tol > ǫRB
tol in order to avoid GreedyDRB iterations that do not

provide significant error (with respect to the truth) reduction.
We emphasize that in the online stage we bound the error in the DRB

approximation with respect to the truth. We note that in practice we do not
invoke ∆N (µ) + ∆̃N,M (µ) (in (3.21)) as an error bound, since evaluation of
∆N (µ) is expensive (N -dependent). We thus invoke in the online stage the less
expensive (evaluation cost depends on M , and not on N) bound ∆N,M (µ) in
(3.15). We discuss computational procedures and associated computational cost
next.

3.4 Construction-Evaluation Computational Procedures

The key ingredients in our computational procedures are the affine expansions
(2.1) and (2.2) of a and f , respectively. The construction–evaluation proce-
dures which we introduce here enable efficient offline–online computational pro-
cedures. We discuss application of the construction–evaluation procedures to
the offline–online decoupling for each of our two particular applications, focus
calculation and hp-RB approximation, in Section 4 and Section 5, respectively.
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3.4.1 Output Approximation

RB output. We first expand the RB field approximation in terms of the basis
functions ζ1, . . . , ζN of XN as

uN (µ) =
N∑

n=1

uN,n(µ)ζn. (3.22)

With (2.1) and (2.2) we may then write (3.2) as the linear system

N∑

j=1

uN,j(µ)

(
Qa∑

q=1

aq(ζj , ζi)Θ
q
a(µ)

)

=

Qf∑

q=1

fq(ζi)Θ
q
f (µ), 1 ≤ i ≤ N, (3.23)

in the coefficients uN,j(µ), 1 ≤ j ≤ N . We obtain the RB output approximation
(3.3) as

sN (µ) = ℓ(uN (µ)) =
N∑

n=1

uN,n(µ)ℓ(ζn). (3.24)

We now identify the construction and evaluation stages. In the construction
stage we compute for 1 ≤ q ≤ Qa the “stiffness matrices” Aq

N ≡ {aq(ζj , ζi)} ∈
R

N×N ; we compute for 1 ≤ q ≤ Qf the “load vectors” F q
N ≡ {fq(ζi)} ∈

R
N ; we also compute the terms ℓ(ζi) (1 ≤ i ≤ N) required for the output.

The construction stage is performed at cost O(N •). In the evaluation stage,
given any µ ∈ D, we evaluate Θq

a(µ), 1 ≤ q ≤ Qa, and Θq
f (µ), 1 ≤ q ≤ Qf ,

at cost O(Q); we then perform the two summations over q in (3.23) at cost
O(QaN

2 + QfN), and solve the N × N linear system for the RB coefficients
uN,n(µ), 1 ≤ n ≤ N , at cost O(N3) (we must anticipate that the RB system
matrix is dense). We finally evaluate the RB output approximation (3.24) at
cost O(N).

DRB output. We first expand the basis functions ψ1, . . . , ψM of XN,M in
terms of the basis functions ζ1, . . . , ζN of XN as

ψi =

N∑

n=1

κi,nζn, 1 ≤ i ≤M ; (3.25)

recall that

span{ψ1, . . . , ψM}
︸ ︷︷ ︸

XN,M

= span{uN (µ′
1), . . . , uN (µ′

M )}
︸ ︷︷ ︸

XN,M

⊂ span{ζ1, . . . , ζN}
︸ ︷︷ ︸

XN

, (3.26)

where ψ1, . . . , ψM is an X-orthonormal basis for XN,M . We may obtain the
coefficients κm,n, 1 ≤ m ≤ M , 1 ≤ n ≤ N , from the Gram-Schmidt procedure
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for ψ1, . . . , ψM as follows. For m = 1, we obtain

ψ1 =
uN (µ′

1)

‖uN (µ′
1)‖X

=

∑N
n=1 uN,n(µ′

1)ζn
(
∑N

m=1

∑N
n=1 uN,n(µ′

1)uN,m(µ′
1) (ζm, ζn)X
︸ ︷︷ ︸

δm,n

)1/2
(3.27)

=

∑N
n=1 uN,n(µ′

1)ζn
(
∑N

n=1(uN,n(µ′
1))2

)1/2
≡

N∑

n=1

κ1,nζn, (3.28)

where δi,j is the Kroenecker delta symbol. For 2 ≤ m ≤ M , we further obtain
ψm = ψ̃m/‖ψ̃m‖X where, from (3.22) and (3.25),

ψ̃m = uN (µ′
m)−

m−1∑

s=1

(ψs, uN (µ′
m))Xψs, (3.29)

=

N∑

n=1

uN,n(µ′
m)ζn −

m−1∑

s=1

N∑

n=1

N∑

k=1

N∑

l=1

uN,l(µ
′
m)κs,k (ζk, ζl)X

︸ ︷︷ ︸

δk,l

κs,nζn (3.30)

=
N∑

n=1

(

uN,n(µ′
m)−

m−1∑

s=1

N∑

k=1

uN,k(µ′
m)κs,kκs,n

)

ζn ≡
N∑

n=1

κ̃m,nζn. (3.31)

We thus identify κm,n = κ̃m,n/‖ψ̃m‖X , 1 ≤ n ≤ N , with

‖ψ̃m‖X =
( N∑

n=1

N∑

k=1

κ̃m,nκ̃m,k (ζn, ζk)X
︸ ︷︷ ︸

δn,k

)1/2

(3.32)

=
( N∑

n=1

κ̃2
m,n

)1/2

. (3.33)

In practice, we do not explicitly perform this (N -dependent) Gram-Schmidt
procedure since we do not explicitly require the DRB basis functions ψm, 1 ≤
m ≤M . From (3.28), (3.31), and (3.33), we obtain the coefficients κm,n at cost
O(NM2) (we use a sum-factorization technique in (3.31)).5

We next expand the DRB field approximation in terms of the basis functions
of XN,M as

uN,M (µ) =

M∑

m=1

uN,M,m(µ)ψm. (3.34)

5In (3.28), (3.31), and (3.33) we invoke the fact that (ζk, ζl)X = δk,l; however this is only
true in infinite precision. An improvement to the numerical stability of our approach is thus
to compute and store (ζk, ζl)X , 1 ≤ k, l ≤ N ; we may then obtain κ1,n from (3.27) rather

than from (3.28), and κ̃m,n and ‖ψ̃m‖X , 2 ≤ m ≤ M , from (3.30) and (3.32) rather than
from (3.31) and (3.33), respectively. Note (3.30) requires O(N2M) operations but (3.31) only
O(NM2).
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With (2.1) and (2.2) we may then write (3.5) as the linear system

M∑

j=1

uN,M,j(µ)

(
Qa∑

q=1

aq(ψj , ψi)Θ
q
a(µ)

)

=

Qf∑

q=1

fq(ψi)Θ
q
f (µ), 1 ≤ i ≤M (3.35)

in the coefficients uN,M,j(µ), 1 ≤ j ≤ M . We obtain the DRB output approxi-
mation (3.6) as

sN,M (µ) = ℓ(uN,M (µ)) =
M∑

m=1

uN,M,m(µ)ℓ(ψm). (3.36)

With (3.25), we note that we may write aq(ψj , ψi), f
q(ψi), and ℓ(ψi) as

aq(ψj , ψi) =
N∑

n=1

κj,n

(
N∑

m=1

κi,ma
q(ζn, ζm)

)

, 1 ≤ q ≤ Qa, 1 ≤i, j ≤M,

(3.37)

fq(ψi) =
N∑

n=1

κi,nf
q(ζn), 1 ≤ q ≤ Qf , 1 ≤i ≤M, (3.38)

ℓ(ψi) =
N∑

n=1

κi,nℓ(ζn), 1 ≤i ≤M, (3.39)

respectively. We may then identify the construction and evaluation stages. In
the construction stage we first obtain, for 1 ≤ q ≤ Qa, the matrices Aq

N,M ≡
{aq(ψj , ψi)} ∈ R

M×M from the matrices Aq
N ∈ R

N×N by (3.37) at costO(N2M)
through a sum factorization technique as follows: for 1 ≤ q ≤ Qa, we first
compute and store (temporarily) the terms

τ q
i,n =

N∑

m=1

κi,ma
q(ζn, ζm), 1 ≤ i ≤M, 1 ≤ n ≤ N, (3.40)

at cost O(N2M); we then perform the outer summation

aq(ψj , ψi) =
N∑

n=1

κj,nτ
q
i,n, 1 ≤ i, j ≤M, (3.41)

at cost O(M2N). The total cost of (3.37) is thus O(N2M) (for each q) since
M ≤ N .

We next obtain, for 1 ≤ q ≤ Qf , the vectors F q
N,M ≡ {fq(ψi)} ∈ R

M from

the vectors F q
N ∈ R

N by (3.38) at cost O(MN); and we obtain ℓ(ψi), 1 ≤ i ≤M ,
from ℓ(ζn), 1 ≤ n ≤ N , by (3.39) at cost O(MN). The cost of the construction
stage is thus N -independent. In the evaluation stage, given any µ ∈ D′, we
evaluate Θq

a(µ), 1 ≤ q ≤ Qa, and Θq
f (µ), 1 ≤ q ≤ Qf , at cost O(Q); we then

perform the two summations over q in (3.35) at cost O(QaM
2 + QfM), and

solve the M×M linear system for the DRB coefficients uN,M,m(µ), 1 ≤ m ≤M ,
at cost O(M3). We finally evaluate the DRB output approximation (3.36) at
cost O(M).
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3.4.2 A Posteriori Error Bound

We discuss here the computational procedures associated with the residual dual
norms required for our a posteriori error estimators. We refer to [16, 17, 26] for
the computational procedures associated with the coercivity (or stability factor)
lower bound (the SCM).

Dual X-norm of RB residual. We now discuss the construction-evaluation
procedure for the dual norm of the RB residual. With (2.1), (2.2), and (3.22),
we may expand (3.8) as

(RN (µ), v)X =

Qf∑

q=1

fq(v)Θf
q (µ)−

N∑

n=1

uN,n(µ)

Qa∑

q=1

aq(ζn, v)Θq
a(µ) (3.42)

=

N̄∑

i=1

φi(µ)Li(v), (3.43)

for all v ∈ X. Here N̄ = Qf + NQa, and the Li ∈ X ′ and φi : D → R are
defined explicitly as

Li = f i, 1 ≤i ≤ Qf , (3.44)

LQf +i+(n−1)Qa = ai(ζn, ·), 1 ≤i ≤ Qa, 1 ≤ n ≤ N, (3.45)

φi = Θi
f , 1 ≤i ≤ Qf , (3.46)

φQf +i+(n−1)Qa = uN,nΘi
a, 1 ≤i ≤ Qa, 1 ≤ n ≤ N. (3.47)

We then define li ∈ X, 1 ≤ i ≤ N̄ , such that

(li, v)X = Li(v), ∀v ∈ X. (3.48)

Hence, by linearity,

RN (µ) =

N̄∑

i=1

φi(µ)li. (3.49)

We may now identify the construction and evaluation stages. In the con-
struction stage we solve (3.48), 1 ≤ i ≤ N̄ , and compute the inner products
(li, lj)X , 1 ≤ i, j ≤ N̄ , at cost O(N •). In the evaluation stage, given the RB
solution coefficents for any µ ∈ D, we evaluate φi(µ), 1 ≤ i ≤ N̄ , at cost
O(Qf +QaN), and perform the summation

‖RN (µ)‖2
X =

N̄∑

i=1

N̄∑

j=1

φi(µ)φj(µ)(li, lj)X , (3.50)

at cost O(N̄2) = O(Q2N2).
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Dual X-norm of DRB residual. We next discuss the construction-evaluation
procedure for the dual norm of the DRB residual. With (2.1), (2.2), and (3.34),
we may expand (3.14) as

(RN,M (µ), v)X =

Qf∑

q=1

fq(v)Θf
q (µ)−

M∑

m=1

uN,M,m(µ)

Qa∑

q=1

aq(ψm, v)Θq
a(µ) (3.51)

=

M̄∑

i=1

ϕi(µ)Hi(v), (3.52)

for all v ∈ X. Here M̄ = Qf + MQa, and the Hi ∈ X ′ and ϕi : D′ → R are
defined explicitly as

Hi = f i, 1 ≤i ≤ Qf , (3.53)

HQf +i+(m−1)Qa = ai(ψm, ·), 1 ≤i ≤ Qa, 1 ≤ m ≤M, (3.54)

ϕi = Θi
f , 1 ≤i ≤ Qf , (3.55)

ϕQf +i+(m−1)Qa = uN,M,mΘi
a, 1 ≤i ≤ Qa, 1 ≤ m ≤M. (3.56)

We then define hi ∈ X, 1 ≤ i ≤ M̄ , such that

(hi, v)X = Hi(v), ∀v ∈ X. (3.57)

Hence, by linearity,

RN,M (µ) =

M̄∑

i=1

ϕi(µ)hi. (3.58)

We now note, by (3.25), that we may further expand the HQf +i+(m−1)Qa in
(3.54) in terms of the intermediate RB basis {ζn}N

n=1 as

HQf +i+(m−1)Qa = ai(ψm, ·) =

N∑

n=1

κm,na
i(ζn, ·), (3.59)

for 1 ≤ i ≤ Qa and 1 ≤ m ≤M ; thus, by linearity,

hQf +i+(m−1)Qa =

N∑

n=1

κm,nl
Qf +i+(n−1)Qa , (3.60)

for 1 ≤ i ≤ Qa and 1 ≤ m ≤M . We recall the definition of li, 1 ≤ i ≤ Qf +NQa,
from (3.48), (3.44), and (3.45).

We next consider the inner products (hi, hj)X , 1 ≤ i, j ≤ M̄ . First, it is
clear that

(hi, hj)X = (li, lj)X , 1 ≤ i, j ≤ Qf ; (3.61)
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further, we note that

(hQf +i+(m−1)Qa , hj)X =

N∑

n=1

κm,n(lQf +i+(n−1)Qa , lj)X , (3.62)

(hj , hQf +i+(m−1)Qa)X =

N∑

n=1

κm,n(lj , lQf +i+(n−1)Qa)X , (3.63)

for 1 ≤ i ≤ Qa, 1 ≤ m ≤M , and 1 ≤ j ≤ Qf ; we finally note that

(hQf +i+(m−1)Qa , hQf +j+(m′
−1)Qa)X

=

N∑

n=1

κm,n

(
N∑

n′=1

κm′,n′(lQf +i+(n−1)Qa , lQf +j+(n′
−1)Qa)X

)

, (3.64)

for 1 ≤ i, j ≤ Qa, 1 ≤ m,m′ ≤ M . The key observation here is that once
(li, lj)X , 1 ≤ i, j ≤ N̄ , are given from the intermediate RB construction stage,
the analogous data (hi, hj)X , 1 ≤ i, j ≤ M̄ , for the DRB model may be obtained
at cost O(N•) — independently of the truth complexity N .

We may now identify the construction and evaluation stages. In the con-
struction stage we obtain (hi, hj)X , 1 ≤ i, j ≤ M̄ , from (li, lj)X , 1 ≤ i, j ≤ N̄ ,
by (3.61)–(3.64). The cost is dominated by the summation (3.64), for which we
invoke a sum factorization technique: we first compute and store the term in
parentheses for 1 ≤ i, j ≤ Qa, 1 ≤ n ≤ N and 1 ≤ m′ ≤M at cost O(Q2

aN
2M);

we then perform the outer summation (over n) for 1 ≤ i, j and 1 ≤ m,m′ ≤M
at cost O(Q2

aM
2N). The total cost is thus O(Q2

aN
2M) since M ≤ N . (Direct

evaluation of (3.64) requires O(Q2N2M2) operations.) In particular, the DRB
construction stage is N -independent. In the evaluation stage, given the DRB
solution coefficents for any µ ∈ D′, we evaluate ϕi(µ), 1 ≤ i ≤ M̄ , at cost
O(M̄) = O(Qf +QaM), and perform the summation

‖RN,M (µ)‖2
X =

M̄∑

i=1

M̄∑

j=1

ϕi(µ)ϕj(µ)(hi, hj)X (3.65)

at cost O(M̄2) = O(Q2M2).

Dual XN -norm of DRB residual. We next discuss the construction-evaluation
procedure for the dual norm of the DRB residual with respect to the interme-
diate RB approximation space, ‖R̃N,M (µ)‖X . With (2.1), (2.2), and (3.34), we
may expand (3.16) as

(R̃N,M (µ), v)X =

Qf∑

q=1

fq(v)Θf
q (µ)−

M∑

m=1

uN,M,m(µ)

Qa∑

q=1

aq(ψm, v)Θq
a(µ) (3.66)

=

M̄∑

i=1

ϕi(µ)Hi(v), (3.67)
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for all v ∈ XN . We then define h̃i ∈ XN , 1 ≤ i ≤ M̄ , such that

(h̃i, v)X = Hi(v), ∀v ∈ XN . (3.68)

Hence, by linearity,

R̃N,M (µ) =

M̄∑

i=1

ϕi(µ)h̃i. (3.69)

We next consider the inner products (h̃i, h̃j)X , 1 ≤ i, j ≤ M̄ . We note that
h̃i ∈ XN may be written as

h̃i =

N∑

n=1

ηi
nζn, 1 ≤ i ≤ M̄, (3.70)

where the coefficients ηi
1, . . . , η

i
N satisfy

N∑

n=1

ηi
n (ζn, ζm)X
︸ ︷︷ ︸

δm,n

= ηi
m = Hi(ζm), 1 ≤ m ≤ N, (3.71)

thanks to the X-orthonormal basis for XN . Hence

(h̃i, h̃j)X =
N∑

m=1

N∑

n=1

ηi
mη

j
n (ζm, ζn)X
︸ ︷︷ ︸

δm,n

=
N∑

n=1

Hi(ζn)Hj(ζn), (3.72)

for 1 ≤ i, j ≤ M̄ .
We may now identify the construction and evaluation stages. In the con-

struction stage we compute the inner products (h̃i, h̃j)X , 1 ≤ i, j ≤ M̄ , from
(3.72) at cost O(NM̄2); note thatHi(ζn), 1 ≤ i ≤ M̄ , 1 ≤ n ≤ N , may be evalu-
ated from (3.53) and (3.59) at cost O(N2M̄) since the matrices Aq

N , 1 ≤ q ≤ Qa,
and vectors F q

N , 1 ≤ q ≤ Qf , are computed and stored during the construction
stage for the intermediate RB output. In the evaluation stage, given the DRB
solution coefficients for any µ ∈ D, we evaluate ϕi(µ), 1 ≤ i ≤ M̄ , at cost
O(Qf +QaM), and perform the summation

‖R̃N,M (µ)‖2
X =

M̄∑

i=1

M̄∑

j=1

ϕi(µ)ϕj(µ)(h̃i, h̃j)X , (3.73)

at cost O(M̄2) = O(Q2M2).
We note that as an alternative to the bound ∆̃N,M (µ) we may directly

compute ‖uN (µ) − uN,M (µ)‖X at cost O(QN2 + N3). However typically M

is significantly smaller than N and thus computation of ∆̃N,M (µ) is typically
less expensive than computation of ‖uN (µ) − uN,M (µ)‖X when the bound is
required for many µ as in the GreedyDRB algorithm.
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4 Focus Calculations

In the context of focus calculations we require many (or real-time) RB output (or
RB error bound) evaluations over a parameter subset or submanifold D′ ⊂ D.
Given an intermediate RB model developed for the parameter domain D, a
smaller DRB model is typically sufficient over D′ ⊂ D. This smaller DRB
model may yield significant speedup compared to the standard RB alternative
while preserving numerical accuracy.

4.1 Offline–Online Decomposition

We now discuss the offline-online decomposition associated with the focus cal-
culation context. The offline stage is the construction of the intermediate RB
model over D: we perform GreedyRB (Algorithm 1) for a specified initial pa-
rameter value µ1 ∈ D and a specified error bound tolerance ǫRB

tol (to be satisfied
over the training set ΞD

train ⊂ D). This stage is expensive — the cost is O(N •)
— but performed only once as preprocessing.

In the online stage, given a parameter subdomain or submanifold D′ ⊂ D,
we first construct the DRB model: we perform GreedyDRB (Algorithm 2) for
a specified initial parameter value µ′

1 ∈ D′, a specified intermediate RB space
(constructed offline and upon which the DRB approximation is built) dimension
N ≤ Nmax, and a specified error bound tolerance ǫDRB

tol (to be satisfied over the

training set ΞD
′

train ⊂ D′). The cost of this step derives from RB snapshot
computation and RB error bound preprocessing and evaluation; below M̄max ≡
Qf +QaMmax.

1. RB snapshot computation. We compute Mmax intermediate RB snapshots
of complexity Nmax. The cost is O(Mmax(QN2

max + N3
max)) (we must

anticipate that the RB system is dense).

2. DRB construction. We obtain the parameter independent matrices and
vectors associated with the DRB system at cost O(QN2

maxMmax); note
that we obtain these entities directly from the respective intermediate RB
entities (computed offline).

3. DRB error bound preprocessing. We must compute M̄2
max inner products

(3.72) for our error bound ∆̃N,M (used in the GreedyDRB sampling proce-
dure) and M̄2

max inner products (3.61)–(3.64) for our error bound ∆N,M

(used for DRB output certification). The total cost is dominated by (3.64)
and is O(Q2N2

maxMmax).

4. DRB error bound evaluation. We compute the DRB approximation and
evaluate the DRB error bound ∆̃N,M over the training set ΞD

′

train at each

GreedyDRB iteration. The cost is, to leading order, O(Mmax|ΞD
′

train|(M3
max+

M2
maxQ

2)).

5. DRB focus calculations. For any new parameter value µ ∈ D′ and given
1 ≤ M ≤ Mmax, we perform DRB evaluation: computation of the DRB
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solution, DRB output, and DRB error bound with respect to the truth
approximation at cost O(M3 +M2Q2).

Note that the focus calculation online stage includes the construction of the
DRB model over D′ — steps 1-4 above. The key point is that this DRB model
is built inexpensively (N -independently) upon the underlying intermediate RB
model; the subsequent DRB evaluation stage (step 5 above, performed many
times over D′) is then independent of N and N . As a result, in the many-
query context, a DRB approach may provide significant speedup compared to
the standard RB alternative.

We finally note the important role of the sum factorization invoked in (3.37)
and (3.64). The complexity reduction — a factor of M — is significant in
practice in particular for focus calculations since the calculations (3.37) and
(3.64) are performed online.

4.2 Numerical Results

4.2.1 Thermal Block

We develop a DRB approximation for the thermal block problem introduced
in Section 2.2.1 in order to accelerate a focus calculation. We first gener-
ate an intermediate RB approximation of dimension Nmax = 96: we per-
form GreedyRB for µ1 = (0.75, 0.75) and ǫRB

tol = 10−4 over a uniformly dis-
tributed random training set ΞD

train ⊂ D of size |ΞD
train| = 104. We then

specify a two-dimensional submanifold D′ ≡ [0.75, 1.5]2 × {µfixed} ⊂ D, where
µfixed = (0.7, 0.8, 0.9, 1.0, 1.1) ∈ R

5, and we perform RB focus calculations with
this standard RB model over a 100 × 100 uniform grid of parameter values,
Ξfocus ⊂ D′. The RB outputs (evaluated for each µ ∈ ΞD

train via (2.20)) are
shown in Figure 4.1; the RB output error bounds are shown in Figure 4.2 (top).

We then consider the corresponding DRB approach. We generate a DRB
model of dimension Mmax = 9 which satisfies a tolerance ǫDRB

tol = 10−4 (with
respect to the Nmax = 96 intermediate RB model) over a uniformly distributed
random training set ΞD

′

train ⊂ D′ of size |ΞD
′

train| = 100. We then calculate
the DRB outputs and DRB output error bounds over Ξfocus; in this case the
DRB online computation (including execution of GreedyDRB and evaluation
over Ξfocus) is a factor of 63 faster than the standard RB alternative. More-
over, as shown in Figure 4.2, the maximum output error bounds (with respect
to the underlying truth FE approximation) in the standard RB and derived
RB approximations are 3.6 · 10−5 and 1.4 · 10−4, respectively; hence the DRB
yields a significant speedup with only very mild impact on the accuracy of the
approximation over D′.

4.2.2 Acoustic Horn

We develop a DRB approximation for the acoustic horn problem introduced in
Section 2.2.2 in order to accelerate a focus calculation. We first generate an in-
termediate RB approximation of dimension Nmax = 109: we perform GreedyRB
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Figure 4.1: The RB output values on D′ for the thermal block; note that the
DRB and standard RB outputs are indistinguishable.

for µ1 = (1.4, 2.15, 1.0) and ǫRB
tol = 10−4 over a uniformly distributed random

training set ΞD
train ⊂ D of size |ΞD

train| = 104. We then specify a one-dimensional
slice D′ ≡ {µfixed} × [0.5, 1.0] ⊂ D, where µfixed = (1.4, 2.2) ∈ R

2, and we per-
form RB focus calculations with this standard RB model over a uniform grid of
1000 parameter values, Ξfocus ⊂ D′.

We then consider the corresponding DRB approach. We generate a DRB
model of dimension Mmax = 11 which satisfies a tolerance ǫDRB

tol = 10−4 (with
respect to the Nmax = 109 intermediate RB model) over a uniformly distributed
random training set ΞD

′

train ⊂ D′ of size |ΞD
′

train| = 1000. We then calculate the
DRB outputs and DRB output error bounds over Ξfocus; in this case the online
computation (including execution of GreedyDRB and evaluation over Ξfocus) is
a factor of 10 faster than the standard RB alternative. The focus calculation
speedup here is less than for the thermal block because, first, D′ is not so
“small” compared to D, and second and more importantly, we perform fewer
focus calculations (by a factor of 10). As shown in Figure 4.3, the maximum
output error bounds (with respect to the underlying truth FE approximation)
in the standard RB and derived RB approximations are 9.8 ·10−5 and 1.2 ·10−4,
respectively; hence the DRB yields a significant speedup with only very mild
impact on the accuracy of the approximation over D′.
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Figure 4.2: Standard RB output error bounds on D′ with respect to the truth
discretization (top); and DRB output error bounds on D′ with respect to the
truth discretization (bottom).
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5 hp-RB Approximation

5.1 Summary of the hp-RB Method

The hp-RB method introduced in [7] (see also [6, 11]) provides a partition of
the parameter domain D into K parameter subdomains Vk ⊂ D, 1 ≤ k ≤ K;
for each parameter subdomain Vk, the algorithm generates an associated RB
approximation space Xk

Nk ⊂ X of dimension Nk spanned by truth FE snapshots
associated with parameter values within Vk. The approach is motivated by
order reduction: we may choose the dimension Nk of the “local” space Xk

Nk

relatively small compared to the dimension N of the “global” space XN while
preserving numerical accuracy. We thus obtain significant speedup of the RB
output and RB error bound evaluation. However, the offline (precomputation)
cost associated with an hp-RB approach is significantly larger than the offline
cost associated with the standard RB procedure, and must thus in practice be
taken into consideration.

We now review the hp-RB method. We first describe the splitting procedure
for an arbitrary subdomain V ⊆ D. Given V ⊆ D and a parameter “anchor
point” µV

1 ∈ V, we compute the truth FE snapshot u(µV
1 ) and define the one-

dimensional “temporary” RB space

XV
1 = span{u(µV

1 )} (5.1)

associated with V. We next introduce a finite training set ΞV
train ⊂ V; we then

evaluate the RB error bound ∆V
N=1 for the RB approximation associated with

the space XV
N=1 (essentially (3.9) with an appropriate change of notation) for

each parameter value µ ∈ ΞV
train — essentially one iteration of the GreedyRB

algorithm restricted to V ⊂ D — in order to identify a second parameter value

µV
2 = arg max

µ∈ΞV

train

∆V
N=1(µ). (5.2)

We then split V into two subdomains Vleft ⊂ V and Vright ⊂ V based on (Eu-
clidean, say) distance ‖ · ‖2 to the points µV

1 and µV
2 : any point µ ∈ V belongs

to Vleft if and only if ‖µ − µV
1 ‖2 ≤ ‖µ − µV

2 ‖2; otherwise, µ ∈ V belongs to
Vright. Finally, we define µV

1 as the anchor point for Vleft and we define µV
2 as

the anchor point for Vright.
We may now describe the hp-RB method. The first step is h-refinement:

We apply the splitting scheme discussed above for V = D, and then recursively
for V = Vleft and V = Vright (sketched in Figure 5.1 for two levels of splitting).
We terminate the splitting of a subdomain V if maxµ∈ΞV

train
∆V

N=1(µ) ≤ ǫhtol,

where ǫhtol is a specified tolerance for the h-refinement step. The result of this
hierarchical procedure is K = K(ǫhtol) parameter subdomains Vk ⊂ D, 1 ≤ k ≤
K.

The next step is p-refinement: Greedy construction of the approximation
spaces Xk

Nk , 1 ≤ k ≤ K. We here choose Nk, 1 ≤ k ≤ K, such that a specified

tolerance ǫptol ≤ ǫhtol is satisfied over training sets ΞV
k

train ⊂ Vk, 1 ≤ k ≤ K. Note
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Figure 5.1: h-refinement partition procedure.

that this step is essentially execution of the GreedyRB algorithm for ǫRB
tol = ǫptol

restricted to each subdomain Vk ⊂ D, 1 ≤ k ≤ K.
In practice, we also apply if necessary an additional splitting step (see [6])

after the p-refinement. Essentially, this step performs additional h-refinement
of a subdomain if ǫptol is not satisfied for specified Nhp

max basis functions. The ad-
ditional splitting proceeds recursively with h-refinement and p-refinement steps
until ǫptol is satisfied for Nhp

max basis functions, thus providing for direct control
of the tolerance ǫptol and the RB space dimension.

Thanks to the hierarchical construction of the partition, we may organize
the subdomains (and associated approximation spaces) as the leaf nodes in a
binary tree with Boolean flags, as illustrated in Figure 5.1. This tree-structure
partiton is important in the hp-RB online stage: the cost to determine which
subdomain Vk∗

contains any given µ ∈ D is O(log(K)) for K subdomains [7].
The hp-RB approximation reads as follows: first, given any µ ∈ D, determine

k∗ = k∗(µ) ∈ [1,K] and hence Vk∗

and Xk∗

Nk∗ through a binary search; given

1 ≤ N ≤ Nhp
max, we write N̂ = min{N,Nk∗} and Xhp

N = Xk∗

N̂
. Then, determine

uK
N (µ) ∈ Xhp

N such that

a(uK
N (µ), v;µ) = f(v;µ), ∀v ∈ Xhp

N ; (5.3)

finally evaluate the hp-RB output approximation

sK
N (µ) = ℓ(uK

N (µ)). (5.4)

We define the hp-RB error bound as

∆K
N (µ) =

‖RK
N (µ)‖X

αLB(µ)
, (5.5)

where RK
N (µ) ∈ X denotes the Riesz representation of the residual

rK
N (·;µ) = f(·;µ)− a(uK

N (µ), ·;µ) ∈ X ′. (5.6)

We may readily show that ‖u(µ)− uK
N (µ)‖X ≤ ∆K

N (µ) by arguments analogous
to (3.10)–(3.12).
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5.2 DRB Modification

We now discuss the application of the two-step RB approach within the hp-RB
context. We introduce a “global” intermediate RB approximation space XNmax

of dimension Nmax constructed by GreedyRB (Algorithm 1) for a specified initial
parameter value µ1 ∈ D and a specified error bound tolerance ǫRB

tol (to be satisfied
over the training set ΞD

train ⊂ D). The necessary modifications to the hp-RB
method discussed in the previous subsection are then as follows. First, during
the h-refinement step we replace the truth snapshot u(µV

1 ) by an RB snapshot
uNmax

(µV
1 ) ≈ u(µV

1 ); we thus replace the RB space XV
1 in (5.1) by the DRB

space

XV
Nmax,1 = span{uNmax

(µV
1 )}. (5.7)

We further replace the RB error bound ∆V
N=1 in (5.2) by a DRB error bound

∆̃V
Nmax,M=1 (essentially (3.17) with an appropriate change of notation). We then

invoke this DRB error bound (with respect to the underlying RB approximation)
to determine a second parameter value

µV
2 = arg max

µ∈ΞV

∆̃V
Nmax,M=1(µ). (5.8)

As before, µV
1 and µV

2 determine the splitting of V into Vleft and Vright. Note that

we terminate the splitting of a subdomain V if maxµ∈ΞV

train
∆̃V

Nmax,M=1(µ) ≤ ǫhtol;

typically ǫhtol is chosen much greater than ǫRB
tol . As before, we apply the splitting

procedure recursively until convergence; the result is K = K(ǫhtol) subdomains
Vk ⊂ D, 1 ≤ k ≤ K.

Next, in the p-refinement step, we associate to each Vk a DRB approximation
space XNmax,Mk , 1 ≤ k ≤ K; the p-refinement step is thus essentially execution
of GreedyDRB for ǫRB

tol = ǫptol restricted to each Vk, 1 ≤ k ≤ K. We typically
choose ǫptol such that ǫRB

tol ≤ ǫptol < ǫhtol. As before, we apply in practice an
additional splitting step which provides simultaneous control over the tolerance
ǫptol and the maximum DRB space dimension Mhp

max.
With the modificatins above, the hp-DRB approximation reads as follows:

first, given any µ ∈ D, determine k∗ = k∗(µ) and hence Vk∗

and Xk∗

Nmax,Mk∗

through a binary search; given 1 ≤ M ≤ Mhp
max, we write M̂ = min{M,Mk∗}

and Xhp
Nmax,M = Xk∗

Nmax,M̂
. Then, determine uK

Nmax,M (µ) ∈ Xhp
Nmax,M such that

a(uK
Nmax,M (µ), v;µ) = f(v;µ), ∀v ∈ Xhp

Nmax,M ; (5.9)

finally evaluate the hp-DRB output approximation

sK
Nmax,M (µ) = ℓ(uK

Nmax,M (µ)). (5.10)

We define the hp-DRB error bound as

∆K
Nmax,M (µ) =

‖RK
Nmax,M (µ)‖X

αLB(µ)
, (5.11)
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where RK
Nmax,M (µ) ∈ X denotes the Riesz representation of the residual

rK
Nmax,M (·;µ) = f(·;µ)− a(uK

Nmax,M (µ), ·;µ) ∈ X ′. (5.12)

We may readily show that ‖u(µ)− uK
Nmax,M (µ)‖X ≤ ∆K

Nmax,M (µ) by arguments
analogous to (3.10)–(3.12). We recall from our discussion in Section 3.4.2 that
we may evaluate ∆K

Nmax,M (µ) inexpensively at cost independent of N and N .
We emphasize that with these modifications we access entities of truth com-

plexity N only for the construction of the intermediate RB model (of complexity
N ≪ N ) upon which the hp-DRB approximation is constructed. We discuss
the offline-online decoupling of the hp-DRB method in the next subsection.

5.3 Offline–Online Decomposition

The hp-DRB offline stage comprises intermediate RB model construction and
then hp-DRB partition and approximation space construction based on this
underlying RB model.

1. RB model construction. We construct an intermediate RB model over D:
we perform GreedyRB (Algorithm 1) for specified µ1 ∈ D and ǫRB

tol . The
cost is N -dependent.

2. hp-DRB partition and approximation space construction. We construct
an hp-DRB model based on the intermediate RB model in step 1 as dis-
cussed in the previous two subsections. This step includes, for each DRB
approximation space, construction of the parameter-independent entities
required for DRB output and DRB error bound evaluation. The cost is
N -independent.

The offline stage may be expensive; however with the DRB modification in
step 2 above we significantly reduce the offline computational cost compared to
a standard hp-RB approach: the Ntotal =

∑K
k=1 N

k truth FE snapshots of N -
dependent complexity required by the standard hp-RB offline stage are replaced
by Mtotal =

∑K
k=1 M

k RB snapshots of Nmax-dependent complexity.6

In the online stage, given any new parameter value µ ∈ D, we first determine
which subdomain Vk∗ ⊂ D contains µ through a binary search at cost O(logK).
Then, for given 1 ≤ M ≤ Mhp

max, we compute the DRB solution, DRB output,
and DRB error bound at cost O(M3 +M2Q2). We note that the online cost is
independent of the truth complexity N and the complexity N associated with
the underlying intermediate RB model. We emphasize that in the online stage,
we invoke the DRB error bound with respect to the FE truth approximation.

We finally note that the offline–online decomposition associated with the hp-
DRB approximation is rather different from the offline–online decomposition
associated with focus calculations: the DRB “technology” is invoked in the
offline (and not online) stage.

6Note that we expect here that Mk ≈ Nk as long as Mk is significantly smaller than Nmax,
1 ≤ k ≤ K. Also note that for simplicity in this argument we assume that K is the same for
the hp-RB and hp-DRB approaches.
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Figure 5.2: Maximum RB (squares) and hp-DRB (circles) error bounds over
random test parameter values as a function of approximation space dimension.

5.4 Numerical Results

5.4.1 Thermal Block

We now apply the hp-DRB method to the thermal block problem introduced
in Section 2.2.1. For the underlying intermediate RB space XNmax

we use the
same space as for the thermal block focus calculation example: Nmax = 96.
We then pursue the hp-DRB procedure discussed above for ǫhtol = 0.3, ǫptol =
10−3, and Mhp

max = 25; the initial parameter value for the partition procedure
is µD

1 = (0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5). The hp-DRB offline computation results
in a partition of D into K = 7565 subdomains, each of which has an associated
DRB approximation space of dimension at most Mhp

max = 25.
We now introduce a uniformly distributed random test set Ξtest ⊂ D of size

|Ξtest| = 1000. We then define, for 1 ≤ N ≤ Nmax, the maximum error bound
associated with the RB approximation,

ǫΞtest

N = max
µ∈Ξtest

∆N (µ); (5.13)

we also define, for 1 ≤ M ≤ Mhp
max, the maximum error bound associated with

the hp-DRB approximation,

ǫK,Ξtest

Nmax,M = max
µ∈Ξtest

∆K
Nmax,M (µ). (5.14)

In Figure 5.2 we compare ǫΞtest

N and ǫK,Ξtest

Nmax,M as functions of the approximation
space dimensions N and M , respectively: clearly the hp-DRB approximation
provides significant dimension reduction. For example, N = 30 and M = 15
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Figure 5.3: The parameter domain partition associated with the hp-DRB ap-
proximation for the acoustic horn problem; note that one octant of the param-
eter domain is hidden.

basis functions are required for an error bound of approximately 10−2 for the
RB and hp-DRB approximation, respectively. The hp-DRB thus provide in this
case online computational savings by a factor of 8 (provided the dense system
matrix LU-factorization dominates online cost).

The main point of this example is not the dimension reduction provided
by the hp-DRB procedure per se: we would have obtained similar dimension
reduction were we to use a standard hp-RB procedure. Our emphasis here is on
the offline stage, which requires 232608 snapshots: this task is feasible in the
hp-DRB case in which each snapshot is an RB calculation (Nmax = 96 degrees
of freedom), but would clearly be prohibitive in the standard hp-RB case in
which each snapshot is a truth calculation (N = 9261 degrees of freedom).

5.4.2 Acoustic Horn

We now apply the hp-DRB method to the acoustic horn problem introduced
in Section 2.2.2. For the underlying intermediate RB space XNmax

we use the
same space as for the acoustic horn focus calculation example: Nmax = 109. We
then pursue the hp-DRB procedure discussed above for ǫhtol = 10, ǫptol = 10−4,
and Mhp

max = 30; the initial parameter value for the partition procedure is µD
1 =

(1.4, 2.15, 1.0). The hp-DRB offline computation results in a partition of D into
K = 997 subdomains as shown in Figure 5.3, each of which has an associated
DRB approximation space of dimension at most Mhp

max = 30.
We now introduce a uniformly distributed random test set Ξtest ⊂ D of size

|Ξtest| = 1000 and show in Figure 5.4 ǫΞtest

N and ǫK,Ξtest

Nmax,M as functions of the
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Figure 5.4: Maximum RB (squares) and hp-DRB (circles) error bounds over
random test parameter values as a function of approximation space dimension.

approximation space dimensions N and M , respectively: clearly the hp-DRB
approximation provides significant dimension reduction. As for the thermal
block example, our main point here is that the DRB strategy enables a feasible
hp-DRB offline computation, compared to a prohibitive or infeasible hp-RB
offline computation.

6 Conclusions and Future Work

We have demonstrated that the new DRB method may provide significant on-
line speedup in the context of focus calculations, for example for visualization or
optimization of RB outputs and RB error bounds over a subdomain or subman-
ifold of the original parameter domain. Further, we have demonstrated that the
DRB method may provide significant offline speedup for hp-RB computations,
or indeed enable hp-RB computations for problems for which the cost of the
standard hp-RB offline stage is prohibitive.

There are several opportunities for extensions. First, the DRB method read-
ily extends to linear parabolic (coercive or non-coercive) problems; we refer to
[9, 12] and [6] for (standard) RB and hp-RB treatment of this class of prob-
lems, respectively. We may also straightforwardly apply the DRB approach
to quadratically nonlinear problems; see [6] for hp-RB treatment of the un-
steady incompressible Navier-Stokes equations. Second, we believe that the
DRB method will further increase the efficacy of the RB method in applications
on “lightweight” hardware [15] where it is crucial to minimize the cost of a re-
duced order model both in terms of computation time and memory footprint.
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In future work we plan to investigate applications of DRB technology in a range
of new areas such as in situ parameter estimation, uncertainty quantification
and design/optimization.
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