445 research outputs found
Elastic and quasi-elastic and scattering in the Dipole Model
We have in earlier papers presented an extension of Mueller's dipole cascade
model, which includes sub-leading effects from energy conservation and running
coupling as well as colour suppressed saturation effects from pomeron loops via
a ``dipole swing''. The model was applied to describe the total and diffractive
cross sections in and collisions, and also the elastic cross
section in scattering.
In this paper we extend the model to describe the corresponding quasi-elastic
cross sections in , namely the exclusive production of vector mesons
and deeply virtual compton scattering. Also for these reactions we find a good
agrement with measured cross sections. In addition we obtain a reasonable
description of the -dependence of the elastic and quasi-elastic
cross sections
Electronic Spin Transport in Dual-Gated Bilayer Graphene
The elimination of extrinsic sources of spin relaxation is key in realizing
the exceptional intrinsic spin transport performance of graphene. Towards this,
we study charge and spin transport in bilayer graphene-based spin valve devices
fabricated in a new device architecture which allows us to make a comparative
study by separately investigating the roles of substrate and polymer residues
on spin relaxation. First, the comparison between spin valves fabricated on
SiO2 and BN substrates suggests that substrate-related charged impurities,
phonons and roughness do not limit the spin transport in current devices. Next,
the observation of a 5-fold enhancement in spin relaxation time in the
encapsulated device highlights the significance of polymer residues on spin
relaxation. We observe a spin relaxation length of ~ 10 um in the encapsulated
bilayer with a charge mobility of 24000 cm2/Vs. The carrier density dependence
of spin relaxation time has two distinct regimes; n<4 x 1012 cm-2, where spin
relaxation time decreases monotonically as carrier concentration increases, and
n>4 x 1012 cm-2, where spin relaxation time exhibits a sudden increase. The
sudden increase in the spin relaxation time with no corresponding signature in
the charge transport suggests the presence of a magnetic resonance close to the
charge neutrality point. We also demonstrate, for the first time, spin
transport across bipolar p-n junctions in our dual-gated device architecture
that fully integrates a sequence of encapsulated regions in its design. At low
temperatures, strong suppression of the spin signal was observed while a
transport gap was induced, which is interpreted as a novel manifestation of
impedance mismatch within the spin channel
Next-to-leading and resummed BFKL evolution with saturation boundary
We investigate the effects of the saturation boundary on small-x evolution at
the next-to-leading order accuracy and beyond. We demonstrate that the
instabilities of the next-to-leading order BFKL evolution are not cured by the
presence of the nonlinear saturation effects, and a resummation of the higher
order corrections is therefore needed for the nonlinear evolution. The
renormalization group improved resummed equation in the presence of the
saturation boundary is investigated, and the corresponding saturation scale is
extracted. A significant reduction of the saturation scale is found, and we
observe that the onset of the saturation corrections is delayed to higher
rapidities. This seems to be related to the characteristic feature of the
resummed splitting function which at moderately small values of x possesses a
minimum.Comment: 34 page
Gate-tunable black phosphorus spin valve with nanosecond spin lifetimes
Two-dimensional materials offer new opportunities for both fundamental
science and technological applications, by exploiting the electron spin. While
graphene is very promising for spin communication due to its extraordinary
electron mobility, the lack of a band gap restricts its prospects for
semiconducting spin devices such as spin diodes and bipolar spin transistors.
The recent emergence of 2D semiconductors could help overcome this basic
challenge. In this letter we report the first important step towards making 2D
semiconductor spin devices. We have fabricated a spin valve based on ultra-thin
(5 nm) semiconducting black phosphorus (bP), and established fundamental spin
properties of this spin channel material which supports all electrical spin
injection, transport, precession and detection up to room temperature (RT).
Inserting a few layers of boron nitride between the ferromagnetic electrodes
and bP alleviates the notorious conductivity mismatch problem and allows
efficient electrical spin injection into an n-type bP. In the non-local spin
valve geometry we measure Hanle spin precession and observe spin relaxation
times as high as 4 ns, with spin relaxation lengths exceeding 6 um. Our
experimental results are in a very good agreement with first-principles
calculations and demonstrate that Elliott-Yafet spin relaxation mechanism is
dominant. We also demonstrate that spin transport in ultra-thin bP depends
strongly on the charge carrier concentration, and can be manipulated by the
electric field effect
Spin Relaxation in Single Layer Graphene with Tunable Mobility
Graphene is an attractive material for spintronics due to theoretical
predictions of long spin lifetimes arising from low spin-orbit and hyperfine
couplings. In experiments, however, spin lifetimes in single layer graphene
(SLG) measured via Hanle effects are much shorter than expected theoretically.
Thus, the origin of spin relaxation in SLG is a major issue for graphene
spintronics. Despite extensive theoretical and experimental work addressing
this question, there is still little clarity on the microscopic origin of spin
relaxation. By using organic ligand-bound nanoparticles as charge reservoirs to
tune mobility between 2700 and 12000 cm2/Vs, we successfully isolate the effect
of charged impurity scattering on spin relaxation in SLG. Our results
demonstrate that while charged impurities can greatly affect mobility, the spin
lifetimes are not affected by charged impurity scattering.Comment: 13 pages, 5 figure
Strongly anisotropic spin relaxation in graphene/transition metal dichalcogenide heterostructures at room temperature
Graphene has emerged as the foremost material for future two-dimensional
spintronics due to its tuneable electronic properties. In graphene, spin
information can be transported over long distances and, in principle, be
manipulated by using magnetic correlations or large spin-orbit coupling (SOC)
induced by proximity effects. In particular, a dramatic SOC enhancement has
been predicted when interfacing graphene with a semiconducting transition metal
dechalcogenide, such as tungsten disulphide (WS). Signatures of such an
enhancement have recently been reported but the nature of the spin relaxation
in these systems remains unknown. Here, we unambiguously demonstrate
anisotropic spin dynamics in bilayer heterostructures comprising graphene and
WS. By using out-of-plane spin precession, we show that the spin lifetime
is largest when the spins point out of the graphene plane. Moreover, we observe
that the spin lifetime varies over one order of magnitude depending on the spin
orientation, indicating that the strong spin-valley coupling in WS is
imprinted in the bilayer and felt by the propagating spins. These findings
provide a rich platform to explore coupled spin-valley phenomena and offer
novel spin manipulation strategies based on spin relaxation anisotropy in
two-dimensional materials
Nanosecond spin lifetimes in single- and few-layer graphene-hBN heterostructures at room temperature
We present a new fabrication method of graphene spin-valve devices which
yields enhanced spin and charge transport properties by improving both the
electrode-to-graphene and graphene-to-substrate interface. First, we prepare
Co/MgO spin injection electrodes onto Si/SiO. Thereafter, we
mechanically transfer a graphene-hBN heterostructure onto the prepatterned
electrodes. We show that room temperature spin transport in single-, bi- and
trilayer graphene devices exhibit nanosecond spin lifetimes with spin diffusion
lengths reaching 10m combined with carrier mobilities exceeding 20,000
cm/Vs.Comment: 15 pages, 5 figure
Odderon in baryon-baryon scattering from the AdS/CFT correspondence
Based on the AdS/CFT correspondence, we present a holographic description of
various C-odd exchanges in high energy baryon-baryon and baryon-antibaryon
scattering, and calculate their respective contributions to the difference in
the total cross sections. We predict that, due to the warp factor of AdS_5, the
total cross section in pp collisions is larger than in p\bar{p} collisions at
asymptotically high energies.Comment: 23 pages, v2: minor changes, to be published in JHE
Energy dependence of the saturation scale and the charged multiplicity in pp and AA collisions
A natural framework to understand the energy dependence of bulk observables
from lower energy experiments to the LHC is provided by the Color Glass
Condensate, which leads to a "geometrical scaling" in terms of an energy
dependent saturation scale Q_s. The measured charged multiplicity, however,
seems to grow faster (~\sqrt{s}^0.3) in nucleus-nucleus collisions than it does
for protons (~\sqrt{s}^0.2), violating the expectation from geometric scaling.
We argue that this difference between pp and AA collisions can be understood
from the effect of DGLAP evolution on the value of the saturation scale, and is
consistent with gluon saturation observations at HERA.Comment: RevTeX, 8 pages, 4 figures. V2: modified discussion of fragmentation,
published in EPJ
- …
