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1 Introduction

It is well known that the BFKL evolution [1–3] suffers, beyond the leading logarithmic

order (LL), from large corrections which are related to the running of the coupling and

to kinematical effects, such as energy-momentum conservation. Such corrections can be

easily added to the leading order formalism in phenomenological applications but it is

also desirable to have a good control of the next-to-leading logarithmic (NLL) corrections

in the precise theoretical formulation. BFKL describes an evolution in rapidity where

the asymptotic limit s/t → ∞ (with s the cms energy and t the momentum transfer)

described by the LL approximation does not correspond to a vanishing coupling strength αs,

unlike the QCD renormalization group (RG) evolution dictated by the DGLAP equations

where the asymptotic limit Q2 → ∞ indeed implies that αs(Q) → 0. Consequently, the

higher order corrections in the latter are well controlled in the region of the applicability

of the formalism. In the BFKL framework on the other hand, as s becomes very large,
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the evolution receives contributions from an increasing phase space in momenta where

αs can be very large, and as a consequence there is no reason to expect that the higher

order corrections can be neglected. Indeed, the calculated NLL corrections to the BFKL

formalism turn out to be very large [4–9], and it is therefore important to try include the

effects of these large corrections in any application.

The NLL BFKL evolution is affected by certain problems which lead to unstable results

such as negative and oscillating cross sections, see for example [10]. These instabilities of

the NLL evolution originate from the existence of negative double and triple poles in the

eigenvalue of the evolution kernel. Certain strategies have therefore been proposed to deal

with the instabilities of the formalism. These involve the all-order resummation of the

dominant parts of the higher order corrections, and there exist several prescriptions [11–

20], all of which are consistent with each other. These procedures lead to the so-called

“renormalization group improved” small-x evolution. For a nice and comprehensive review

of the NLL formalism, its problems, and the resummation strategies, see [10].

When the QCD dynamics is probed at very small-x, however, we also expect corrections

from so-called saturation effects which are related to the formation of strong classical

color fields. The effective theory which takes into account these effects is the Color Glass

Condensate (CGC) (for a review see [21]). These corrections lead to a generalization of

the linear evolution equations, which are now instead replaced by a hierarchy of nonlinear

equations that go under the name of the Balitsky-JIMWLK equations [22–27]. With certain

simplifying assumptions one obtains the compact Balitsky-Kovchegov (BK) equation [28]

which can more easily be used for phenomenology. While the CGC formalism has so far

only been written down to leading logarithmic order in x, in recent years Balitsky and

Chirilli have derived the BK equation at the next-to-leading order accuracy as well [29, 30]

(the quark contribution was calculated earlier in [31, 32]). It is therefore hoped that one

can thus use these results to do phenomenology taking into account both the large NLL

corrections to the evolution, and also the nonlinear corrections which are expected to be

important at small-x. Unfortunately, however, the full NLL BK equation is extremely

complicated and it has so far not been possible to solve it even numerically.

We shall not present here a numerical solution of the full NLL BK equation, but rather

use a very simple, but powerful, method to effectively take into account the nonlinear

corrections in the full NLL BFKL evolution. We will namely solve the full NLL evolution

using a so-called saturation boundary which allows us to extract the universal properties of

the full nonlinear solution such as the energy dependence of the saturation scale, Qs. The

boundary method was originally used in analytic studies of the saturation scale Qs [33, 34],

and it has since been understood that the success and justification of the method can be

attributed, at least for a fixed coupling and at asymptotically high energies, to the formal

correspondence between the small-x physics and the class of phenomena referred to as

reaction-diffusion processes in statistical physics [35] (the evolution equations are said to

exhibit “traveling wave” solutions). In [36, 37], however, it was explicitly demonstrated

via numerical solutions that the method works also for a running coupling and for non-

asymptotic energies, and see also [38] for a recent study using the analytic methods of the
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traveling wave solutions to investigate the universal asymptotic properties of the small-x

evolution beyond the leading order.1

When linearized, the NLL BK equation reduces exactly to the NLL BFKL equation,

and the kernel therefore has the same eigenvalue as the NLL BFKL one [40, 41]. The

NLL BK equation thus contains the exact same double and triple poles which lead to

instabilities in the NLL BFKL evolution. It is therefore reasonable to expect that the NLL

BK equation will suffer from the same problems which plague the NLL BFKL evolution.

We will here demonstrate that the NLL BFKL evolution is indeed unstable also in the

presence of saturation effects, and thus we can conclude that the nonlinear corrections

associated with the physics of saturation, contrary to some earlier hopes, do not cure the

unstable linear NLL evolution. Moreover, we show here that the NLL corrections not

associated with the running of the coupling (namely those that stem from the nonsingular

parts of the DGLAP splitting function and the energy scale terms) are extremely important

and that they cannot be neglected in any approximation.

We indeed find a very strong reduction of the saturation scale, Qs(x), when the full

NLL corrections are included. The fixed coupling results lead to the plots in figure 5

where we find that Q2
s is reduced by around two orders of magnitude at Y = ln 1/x = 12

as compared to the leading order result. Actually, the fixed coupling NLL evolution is

highly unstable so that one can very well expect the full nonlinear evolution to be even

more unstable. This makes it rather hard to sensibly identify the saturation scale, at least

using the widely accepted definitions found in the literature. In this case the saturation

boundary we apply has a stabilizing effect because the solution in the unstable momentum

region is fixed to a certain value imposed by hand. We would certainly not expect the

full nonlinear evolution to manifest such a regularity. Even in this case, however, we do

find that the instability eventually kicks in, as Y grows larger, and the solution starts

to exhibit non-sensible features. We therefore can extract the saturation scale only for a

limited interval in Y . It should be mentioned though that we in this case have chosen the

value ᾱs = 0.2 where ᾱs = αsNc/π, with αs the QCD coupling. It is perfectly possible

that perhaps for a smaller, but totally unrealistic, value of αs we could always define a

saturation momentum; recall that for ᾱs . 0.05 the Pomeron intercept is positive and real,

leading to an exponential growth of the solution.

Part of the NLL corrections are included in the running of the coupling and when we

allow the coupling to run, we find a somewhat milder suppression which is however still very

strong, around a factor 7 for Y = 12. We find that the full NLL evolution is extremely

sensitive on the precise choice of the running of the coupling. While we see that some

choices give stable and reasonable results, other choices give very unstable results leading

1A procedure to solve the BFKL equation with running coupling using given boundary conditions has

been recently pursued in [39]. There, a decomposition into eigenfunctions is performed and the infrared

phase of the Airy functions is adjusted to accommodate the required boundary conditions. We would like

to note that this is a radically different procedure and it does not seem to be related to the physics of

saturation; here, in the present work, we apply the boundary when the solution reaches a critical value

indicating strong scattering. Furthermore, and in contrast to [39], our boundary method is also applicable

to a fixed coupling scenario.
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to wildly oscillating solutions for the transverse momentum distribution obtained from the

gluon Green’s function. Keeping in mind that the differences in the precise choices of the

scale of the running coupling for the NLL kernel are formally of N2LL and N3LL order, we

see that the evolution is extremely sensitive to the higher order corrections. Moreover it is

also very sensitive to the minimum k = |k| used in the numerical implementation; lowering

this minimum beyond some limit causes the solution to exhibit very strong oscillations

which make it extremely unstable.

It therefore seems that some type of resummation procedure as done in the linear

case [11–20] is again necessary for stabilizing the evolution. Such a resummation in the

nonlinear case is likely to be a very complicated task which is beyond the scope of the

present paper. We will not present a full solution of the problem here, but instead we

take the much simpler approach of studying the RG improved evolution in the presence

of the saturation boundary. This was already studied in a semi-analytic way in [34],

but only in the asymptotically high energy regime, and therefore potentially important

pre-asymptotic corrections might have been missed. The application of the boundary

requires some care with the choice of the momentum scales relevant for the process under

study since the NLL kernel depends on the scale choice. Consequently, the resummation

procedure also depends on the exact scale choice. The saturation boundary explicitly

introduces an asymmetry since it acts as a cut-off on the lower values of the transverse

momentum, modifying the linear solution asymmetrically. Similarly, the BK equation

describes an asymmetric situation where a rather small probe, such as a virtual photon

characterized by its virtuality, scatters off a much larger target characterized by a much

smaller momentum scale. In this paper we consider only the asymmetric situation where

a probe with a large scale QA scatters off a target with lower scale QB as is the case in

Deep Inelastic Scattering (DIS).

The large x terms present in the RG improved equation have a significant effect on the

rapidity evolution. For the smallest rapidities the evolution is significantly slowed down,

and is even negative in some k region. This behavior is due to the interplay between

leading and non-leading terms which contribute with opposite signs. This behavior also

manifests itself in the gluon splitting function extracted from the evolution which exhibits a

characteristic “dip” when the splitting function is plotted as a function of the longitudinal

momentum fraction [42]. For small and fixed coupling one can do an analytic estimate

for the location of this dip, and one finds that it occurs when Y ∼ 1/
√
ᾱs. As a result

of collinear resummations, this value is, not surprisingly, parametrically far even from the

regime where BFKL growth starts to occur, that is from Y ∼ 1/ᾱs. Thus, the dip should

have no consequences for the analytic solution when we enter the BFKL regime and in

particular in the asymptotic one, but it is very important for phenomenology since the

rapidity window covered by the dip region is non-negligible for realistic values of the total

rapidity separation. We find for example that the resulting saturation scale Qs plotted

in figure 11, which represents the main results in this paper, stays constant, fixed by the

initial condition, a few units in rapidity Y . Also, if we plot the resulting distribution in

transverse momentum from the RG evolution, we find that saturation plays a smaller role

in the evolution at these rapidities, as is manifest from the results in figure 10 where it is
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seen that the front of the solution essentially progresses with the same speed in both the

linear and nonlinear cases.

The behavior of the RG improved solution can be compared with that of the pure

LL and NLL solutions where saturation plays a bigger role. In the LL evolution, supple-

mented with a running coupling, the nonlinear corrections are rather important and they

significantly reduce the front velocity (i.e the rate of change with rapidity Y of a point of

fixed value for the k distribution). In the NLL case the reduction is much smaller but still

visible even for phenomenologically relevant values of Y . 15, as manifest in figure 7. As

mentioned above the difference in the RG improved case is on the other hand smaller for

the same values of Y . What this implies for the saturation corrections in the RG improved

case is that, as already mentioned, they set in with a delay in rapidity. Needless to say,

this behavior has interesting consequences for the search for saturation effects in experi-

mental data where the rapidity available is rather limited. To make clear statements on

the observed phenomenology, however, we would need to do a more careful analysis where

the undetermined parameters and inputs in our approach are set by fitting data.

The paper is organized as follows. In the next section we go through the BFKL

formalism at both leading and next-to-leading order. We describe the choice of the asym-

metric scale for the next-to-leading order kernel, and we outline the numerical procedure

and the extraction of the saturation scale from the numerical solution. Then in section 3

we present the results of our numerical solution for both the fixed and running coupling

evolutions for the LO and NLO evolutions in the presence of the saturation boundary.

Having demonstrated the instability of the NLO evolution we then go on to discuss the

resummation procedure used in our analysis in section 4. We present the exact resummed

evolution equation which we solve, and we then present the solutions for the saturation

scale and the Green’s function, demonstrating the suppression of the saturation momentum

at small values of the rapidity. Finally in section 5 we briefly summarize the main findings

of our paper.

2 NLL BFKL with the boundary

2.1 General formulation

Let us start this section by recalling the general formulation in QCD of the Regge limit of

high energy scattering. Studies of γ∗γ∗ scattering lead to the formula for the total cross

section [2] (see figure 1)

σAB(s,QA, QB) =

∫
dω

2πi

(
s

s0

)ω ∫
d2k1

k2
1

d2k2

k2
2

ΦA(QA,k1) G(ω;k1,k2) ΦB(QB ,k2) ,

(2.1)

where the functions ΦA,B(Qi,kj) are the impact factors for the photons A and B with

virtualities QA and QB respectively. The exact choice of the scale s0 in the Mellin integral

is arbitrary at leading logarithmic order but is important for the next-to-leading order

calculation. The function G(ω;k1,k2) is referred to as the “BFKL Green’s function” (or

“gluon Green’s function”), and should be thought of as the gauge invariant generalization
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B

A

⊗

⊗

G(ω, k1, k2)

k1

k2

k1

k2

ΦA(QA, k1)

ΦB(QB, k2)

Figure 1. Regge-type factorization formula for the cross section. The slashed gluon lines indicate

reggeized gluons.

of the vacuum expectation value of four off-shell gluons. It satisfies the BFKL equation,

which can be written (in the case of forward scattering) [1–3]

ωG(ω;k,k0) = δ2(k − k0) +

∫
d2k′

π2
K(k,k′)G(ω;k′,k0) , (2.2)

where the kernel of the equation is known up the next-to-leading logarithmic (NLL) order

in ln 1/x [4–9, 43–45]

K(k1,k2) = K0(k1,k2) + K1(k1,k2) + O(α3(µ2)) . (2.3)

It is here understood that K0 and K1 are of order αs and α2
s respectively (as clear from

equations (2.7) and (2.8) below).

We shall be solving the BFKL equation using both kernels K0 and K1. In addition we

will be interested in studying the nonlinear evolution equation obtained after introducing

a saturation boundary which modifies the action of the linear kernel K. We will explain

this procedure further below. Let us mention that we will generally be solving the BFKL

equation with a generic initial condition in k. This corresponds to defining a new function

F(ω,k) by

F(ω,k;QB) ≡
∫

d2k2

k2
2

G(ω;k,k2) ΦB(QB ,k2) , (2.4)

which then satisfies the equation

ωF(ω,k;QB) =
ΦB(QB ,k)

k2
+

∫
d2k′

π2
K(k,k′)F(ω,k′;QB) . (2.5)
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This implies that we may write the cross section (2.1) as

σAB(s,QA, QB) =

∫
dω

2πi

(
s

s0

)ω ∫
d2k1

k2
1

ΦA(QA,k1)F(ω,k1;QB) . (2.6)

In the following we shall keep the dependence of F on QB implicit.

Let us now turn to the explicit expression for the BFKL kernel up to the next-to-

leading order. We consider the solutions which are averaged over the angle. The leading

logarithmic (LL) order kernel (after the angular averaging) is given by

∫
dk2

2

π
K0(k1, k2) f

(
k2
2

)
= ᾱs(µ

2)

∫
dk2

2

1

|k2
1 − k2

2 |

(
f
(
k2
2

)
− 2

min
(
k2
1 , k

2
2

)

k2
1 + k2

2

f
(
k2
1

))
, (2.7)

where we remind once again that ᾱs ≡ αsNc/π. In expressing the explicit form of the action

of the kernel, we have above introduced an auxiliary function f to simplify the notation.

We also use µ to generically denote the scale of the strong coupling. Note that the leading

order kernel does not have any dependence on µ since any difference in the choice of scale

is formally of next-to-leading order. The leading order kernel is therefore scale-invariant.

Physically this can be interpreted as the fact that in the leading order one is taking the

limit of infinite collision energy which implies that any other finite scale in the process (for

example transverse momenta, masses, etc) can be neglected. The next-to-leading order

kernel is instead given by

∫
dk2

2

π
K1(k1, k2) f

(
k2
2

)
= (2.8)

−1

4
ᾱ2

s(µ
2)

∫
dk2

2

{
1

|k2
1 − k2

2 |

(
f
(
k2
2

)
− 2min

(
k2
1, k

2
2

)

k2
1 + k2

2

f
(
k2
1

))

×
[(

11

3
− 2nf

3Nc

)
ln

|k2
1 − k2

2|2
µ2 max(k2

1 , k
2
2)

−
(

67

9
− π2

3
− 10

9

nf

Nc

)]

−f
(
k2
2

)[ 1

32

(
1 +

nf

N3
c

)(
2

k2
1

+
2

k2
2

+

(
1

k2
2

− 1

k2
1

)
ln
k2
1

k2
2

)
+

1

|k2
1 − k2

2|

(
ln
k2
1

k2
2

)2

+

(
3 +

(
1 +

nf

N3
c

)(
3

4
− (k2

1 + k2
2)

2

32k2
1k

2
2

))∫
∞

0

dx

k2
1 + x2k2

2

ln

∣∣∣∣
1 + x

1 − x

∣∣∣∣

− 1

k2
1 + k2

2

(
π2

3
+ 4Li2

[
min

(
k2
1

k2
2

,
k2
2

k2
1

)])]}

+
1

4
ᾱ2

s(µ
2)

(
6ζ(3) − 5π2

12

(
11

3
− 2nf

3Nc

))
f(k2

1) .

Here nf is the number of quark flavors, and Li2 is the dilogarithm function. The scale

dependence on µ in the expression for K1 is related to the running of the QCD coupling.

Starting from the NLL order the kernel K(k1,k2;µ) is thus no longer scale-invariant.

The above form of the kernel was obtained for the so-called symmetric scale choice, see

for example [4]. This means that the solution G(ω; k, k0) to the BFKL equation with

the NLL kernel above should be used for the computation of the cross section in (2.1)

with s0 = QAQB. A physical example of this case is given in γ∗γ∗ scattering where the

– 7 –
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virtualities of the photons are comparable. On the other hand for DIS, still using the same

formula for the cross section (2.1), the scale QA is the virtuality of the photon and QB is

the scale characterizing the hadron target. Therefore for this situation QA ≫ QB, and the

choice of scales will be asymmetric, i.e. s0 = Q2
A.

2.2 Scale choice in the presence of the saturation boundary

As will be demonstrated in the numerical analysis, the scale choice in the presence of the

saturation boundary leads to sizeable variations in the form of the solution. This is so

because the scale choice alters the form of the kernel (2.8). In the Mellin space, it is linked

to the fact that the scale choice changes the terms which contain triple collinear poles [4, 11].

When combined with the nonlinear evolution this can lead to sizable differences due to the

fact that the boundary is also asymmetric with respect to the infrared and ultraviolet

regions (when impact parameter is not taken into account). To be precise, in the case of

the translationally invariant BK equation the effect of the nonlinear term is such that it

cuts off the infrared region of momenta. On the other hand, in writing down the explicit

form of the NLL kernel (2.8), it is implicitly assumed that the evolution is symmetric with

respect to the two momentum scales, k1 ↔ k2, which is not the case of the BK evolution.

Therefore the correct treatment of the energy scale choice is linked with the problem of

the symmetry of the evolution with respect to the target and projectile. This problem is

rather difficult and it is plausible that for the complete solution one needs to take into

account the other contributions, like Pomeron loops, which will guarantee the symmetry of

the evolution, [46–48]. We are not going to address this important, and difficult, issue here

but rather pick a scale choice that is relevant for the DIS process off a nucleus for which

the BK evolution is supposed to be the correct treatment. Therefore we adopt the choice,

s0 = Q2, which is relevant for the DIS process where Q≫ Q0, with being Q the virtuality

of the photon whereas Q0 characterizes the target nucleus or a proton. Consequently one

needs to perform the corresponding scale change in the BFKL kernel above, which amounts

to shifting the characteristic function at the NLL level [9],

δ̃(γ) = χ1(γ) − 2χ0(γ)χ
′

0(γ) . (2.9)

The functions in Mellin space are here defined as

ᾱs χ0(γ) =

∫
dk2

2

π
K0(k1, k2)

(
k2
2

k2
1

)γ−1

, (2.10)

and

ᾱ2
s χ1(γ) =

∫
dk2

2

π
K1(k1, k2)

(
k2
2

k2
1

)γ−1

. (2.11)

The explicit expressions for the characteristic function are

χ0(γ) = 2ψ(1) − ψ(γ) − ψ(1 − γ) , ψ ≡ 1

Γ

dΓ(γ)

dγ
(2.12)
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at the level of the LL approximation, and

χ1(γ) = − b

2

[
χ2

0(γ)+χ
′

0(γ)
]
− 1

4
χ′′

0(γ)−
1

4

(
π

sinπγ

)2 cos πγ

3(1−2γ)

(
11 +

γ(1−γ)
(1+2γ)(3−2γ)

)

+

(
67

36
− π2

12

)
χ0(γ) +

3

2
ζ(3) +

π3

4 sinπγ

−
∞∑

n=0

(−1)n
[
ψ(n+ 1 + γ) − ψ(1)

(n + γ)2
+
ψ(n + 2 − γ) − ψ(1)

(n+ 1 − γ)2

]
(2.13)

at the NLL level. In the above equation we have set nf = 0 and this will be our assumption

for the rest of this paper. Obviously, for phenomenological applications the quarks should

be included in the evolution. For the purpose of this work, however, we will assume that

the dynamics is constrained to the gluon sector only.

The corresponding momentum space representation of the shift part of the kernel is

expressed as

Ishift = 2

∫ 1

0

du

1 − u
f(u)

[
1

2
ln2 u− 2 ln u ln(1 − u)

]
+

+ 2

∫
∞

1

du

u− 1
f(u)

[
−1

2
ln2 u− 2 ln u ln

(
1 − 1

u

)]
. (2.14)

It can be readily checked that the above equation with

f(u) = uγ−1 , (2.15)

gives

Ishift = −2χ0(γ)χ
′

0(γ) . (2.16)

2.3 Numerical implementation

For the numerical implementation, the explicit form of the kernel (2.8) is not very suitable

due to the large cancellations between the terms which constitute the contribution to the

nonsingular part of the DGLAP splitting function. In particular there are large superlead-

ing logarithms which cancel between terms in third and fourth lines of (2.8). To simplify

the numerical procedure, and to obtain an accurate solution, we can instead rewrite these

terms in a suitable way. We start by using the following form of the integral

∫
∞

0

dx

k2
1 + x2k2

2

ln

∣∣∣∣
1 + x

1 − x

∣∣∣∣ =
1

k1k2

[
ln
k2

>

k2
<

tan−1 k<

k>
+ 2ℑLi2

(
i
k<

k>

)]
, (2.17)
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where k<(>) = min(max)(k1, k2) to express the difficult parts of the kernel (2.8) in the

following form

1

32

(
2

k2
1

+
2

k2
2

+

(
1

k2
2

− 1

k2
1

)
ln
k2
1

k2
2

)
(2.18)

+

(
3 +

(
3

4
− (k2

1 + k2
2)

2

32k2
1k

2
2

))∫
∞

0

dx

k2
1 + x2k2

2

ln

∣∣∣∣
1 + x

1 − x

∣∣∣∣

=
1

32

(
2

k2
>

− 1

k2
>

ln
k2

>

k2
<

)
+

1

k>k<

[
3 +

1

32

(
22 − k2

<

k2
>

)][
k<

k>
ln
k2

>

k2
<

+ 2
k<

k>

]

+
1

k>k<

[
3 +

22

32
− 1

32

(
k2

<

k2
>

+
k2

>

k2
<

)][
ln
k2

>

k2
<

S1

(
k<

k>

)
+ 2 S2

(
k<

k>

)]
.

The functions S1 and S2 are series expansions of (tan−1(x) − x) and (ℑLi2(x) − x) re-

spectively. We have checked that it is sufficient to retain only around twenty terms in the

expansions to get accurate results.

2.4 Saturation scale from the boundary method

One of the main objectives in this paper is to extract the saturation scale Qs from the NLL

and RG improved evolutions using the boundary method. In this section we therefore first

describe the definition of the saturation scale used, and having done that we then describe

the precise numerical method in which the definition is employed to obtain Qs.

2.4.1 The definition of the saturation scale

The usual definition of the saturation scale follows from the solution to the nonlinear

BK equation. The object satisfying the BK equation is the coordinate space scattering

amplitude2 N (ŝ, r, b) for a dipole of size r at impact parameter b. Here we denote s/s0 by

ŝ. In this case one can define the saturation momentum Qs as the scale which separates

the regions where N is “small” and thus follows a linear evolution, and where it is nearly

saturated at N = 1 and its evolution is completely nonlinear. The exact definition of Qs is

always somewhat ambiguous since it depends on the precise value of N where one chooses

to separate the linear and the nonlinear regions.

In determining Qs one defines first the critical dipole size, rs, by N (ŝ, rs(ŝ, b), b) =

c < 1 where c is a given constant smaller than 1. Then one can take Qs = C r−1
s where

C is another constant. In the Golec-Biernat-Wusthoff model [49, 50] for instance, one

chooses C = 2. The constant c can be chosen to be around 0.1 − 0.5, the exact value

will determine only the normalization of Qs which is never under full control theoretically.

What is determined by the perturbative evolution is the scale dependence of Qs, i.e. the ŝ

dependence. Note that the saturation of N does not necessarily imply the saturation of the

cross section σ(ŝ, r) of the dipole. The saturation of the cross section is a nonperturbative

problem which is not solved by the perturbative nonlinear evolution equation for N . To

2Equivalently the BK equation can also be written for the dipole “S-matrix” defined as S = 1 −N , see

equations (3.8) and (3.9).
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obtain the cross section σ one needs to integrate N over the impact parameter b

σdip(ŝ, r) = 2

∫
d2bN (ŝ, r, b) . (2.19)

Obviously the behavior of N at large b is nonperturbative and needs to be modeled phe-

nomenologically. In the GBW model the dipole cross section σ is taken to be

σdip(x, r) = σ0

(
1 − exp

(
− r2

4 r2s(x)

))
. (2.20)

Here one sets ŝ = x−1. In this case rs is the length scale above which the cross section of

the dipole saturates to the constant σ0. If one assumes that the b dependence factorizes

as N (r, b) = N (r)S(b) then σ0 = 2
∫

d2b S(b), and in (2.20) clearly r = rs(x) is a line of

constant N . Of course the assumption that σ0 does not evolve with x implies in this case

the complete saturation of the total cross section. It is well known that the x dependence of

the fitted rs(x) agrees in form with the one obtained from the solution to the BK equation,

using the definition of constant N , but also that the leading order evolution gives a much

too steep growth with 1/x.

In this paper we are, however, solving the momentum space forward BFKL equation

using the saturation boundary. The question then is how exactly we should define the

saturation scale from the solution to the evolution equation. It is possible to consider

different choices. For example, in [51] Qs was defined as a line along which the difference

between the linear and the nonlinear solutions to F (in that case obtained from the leading

order BK equation) is of a certain magnitude. This, however, gives an energy dependence

somewhat different than the coordinate space definition.

We shall therefore choose a simpler prescription whereby just as in the coordinate

space (similarly to (2.20)) we define Qs via

F(ŝ, Qs(ŝ)) = const × σ0 . (2.21)

Notice that according to (2.6), F equals the cross section when the impact factor ΦA/k
2 is a

delta function in the transverse momentum. That would be the case if the scattering object

A itself is a parton. Thus one can think of F as the cross section of a parton impinging

on the target particle. Therefore the definition (2.21) bears a certain resemblance to the

definition (2.20). Another partial motivation for this simple choice comes from the fact that

this definition gives an x dependence of Qs which is rather consistent with the empirical

dependence extracted from data. We are here not concerned with the exact value of σ0

which we shall leave unspecified.3 The exact value of the right hand side of (2.21) will

determine only the absolute normalization of Qs.

Another motivation that can be given for the definition (2.21) directly in momentum

space is, at least quasi-classically, a number density in the transverse phase space. In the

Color Glass Condensate model, the equivalent number density

dN

dY d2kd2b
, (2.22)

3As we are here not doing any phenomenological fit this will not be important. The exact value σ0

would be determined as a fit parameter in any practical application.
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of the classical fields saturates when it is of order 1/αs (see for example [52]), and it leads

to a definition of the saturation scale exactly as in (2.21) when integrated over the impact

parameter. Now, our F , which satisfies the BFKL equation and which can be used in a

formula like (2.6) to calculate the total cross section, cannot literally be thought of as a

number density in the phase space. It rather corresponds to a cross section at the parton

level which is conceptually a different object than a phase space number density, since the

gluon Green’s function does not have an operator definition which would match exactly

the definition of a number density.

The object defined as a phase space number density, which is essentially the expectation

value of the field-strength tensor 〈F+iF+i〉 in light-cone gauge (see equation (2.15) in [52])

does, however, also satisfy the BFKL equation at the linear level (see (3.59) in [52]). On the

other hand it does not satisfy the BK equation at the nonlinear level, but some equation

more complicated than BK (this equation can be obtained by applying the JIMWLK

kernel to the operator definition of the quasi-classical number density given by equation

(2.18) in [52]). The point now is that it does not matter for our analysis what the exact

nonlinear equation is, no matter how complicated it may be. The boundary method is

a generic method which can extract the universal properties of the full solution, such as

the ŝ dependence of Qs, and it therefore works for nonlinear equations which are in the

universality class of the BK equation, that is equations whose linear parts are driven by

the BFKL kernel. Therefore if we simply regard F only by its property that it satisfies

the BFKL equation, that is to say if we simply forget the would be operator definition of

the gluon Green’s function and only consider the equation it obeys, then we do not have

to care whether it actually corresponds to the phase space number density or to the dipole

scattering cross section, we will obtain the same solution for the saturation scale. Since

the definition (2.21) works in both cases we conclude that it is indeed the optimal choice

for our problem.

We also note that as we are here solving the forward BFKL in momentum space

with the boundary, we do not have any information on the impact parameter dependence.

Therefore the extracted saturation scale will in this case only depend on the rapidity. In

order to extract the impact parameter dependence of the saturation scale it is necessary

to consider the non-forward evolution in momentum space or the full BK evolution in

coordinate space. It is known [53] that in this case the evolution results in the saturation

scale which decreases as a power in impact parameter, approximately as Q2
s(b) ∼ 1/b4.

This is due to the fact that the evolution is purely perturbative, and no mass scales are

present in the problem which are responsible for long-range non-perturbative physics, see

for example [54, 55].

We now move on to the presentation of the exact implementation of the boundary

which effectively takes into account the missing nonlinear effects.

2.4.2 Application of the saturation boundary

In accordance with the definition (2.21), we shall apply the saturation boundary in our

numerical treatment as follows. First of all, as explained in the previous section we need

not specify the exact value of σ0 for the purposes of our study. Let us therefore define the
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new function F (ŝ, k) by

F (ŝ, k) =
F(ŝ, k)

σ0
, (2.23)

which means that the condition (2.21) defining the saturation scale now simply reads

F (ŝ, k = Qs) = const. (2.24)

Obviously F satisfies the exact same equation as F .

We then define first a so-called “critical value”, c, which for convenience will be taken

as a number of order 1. This number can be close to the constant in (2.21) but ideally it

should be slightly smaller.4 At each step in the numerical solution of F we then define the

corresponding critical transverse momentum scale kc via

F
(
ŝ, kc(ŝ)

)
= c . (2.25)

The boundary will now be applied to those transverse momenta which are below the critical

scale by some magnitude determined by a second parameter ∆. More precisely, if by ρ

we denote the logarithmic scale ρ ≡ ln(k2/k2
0) then F (ŝ, ρ) is forced to satisfy the given

boundary condition for all

ρ ≤ ρc − ∆, ρc ≡ ln
(
k2

c (ŝ)/k
2
0

)
. (2.26)

We shall choose the arbitrary k0 as the minimum k of our numerical computation.

In the original analysis of the method in [33] the boundary was chosen to be totally

absorptive, i.e.

F (ŝ, ρ) = 0 for all ρ ≤ ρc(ŝ) − ∆ . (2.27)

This is the choice most appropriate for the analytic analysis since, after the leading expo-

nential behavior has been factored out, the problem can then be formulated as a random

walk in the presence of an absorptive wall [33]. For the numerical solution on the other

hand we can chose any condition which cuts off the power-like growth of the linear evolu-

tion with ŝ. Actually the totally absorptive boundary has to be applied with some care,

in the numerical treatment, when the evolution is not ”fast enough”. What happens in

this case is that when all the contribution below the boundary ρc(ŝ)−∆ is cut completely

by hand, the next step of the evolution may not be strong enough to push the solution

above the critical value c. If this happens, then at this next step the boundary does not

get applied by definition, since the solution completely falls below c. As saturation then

suddenly switches off, there is an accumulation of the solution just around the boundary

which can give a ”spike” in the solution (that is the solution suddenly jumps high above

the critical value before it is set to zero), and moreover some of the previous points in k

where the solution was set to zero may now grow which in turn implies that the front may

actually, in a single step of the evolution, move in the wrong direction (to smaller k). We

have observed this somewhat peculiar behavior also in the case of the CCFM evolution

4This is so since our c is loosely speaking the value where the effects of saturation first starts to play a

role while Qs can be thought of the scale below which the evolution is really dominated by the nonlinearities.
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equation where the evolution is suppressed at large k due to the restriction imposed by

angular ordering. It also appears to be the case in the RG improved evolution we study

below. On the other the leading order BFKL evolution always seems fast enough so that

this problem never appears. We do not find that this is a major obstacle for the numerical

implementation of the totally absorptive boundary, but it does require some care in the

precise treatment. We therefore also consider a second boundary which is more straight-

forward to implement numerically. In this case we simply freeze F at the boundary, and

one can show that the two implementations are equivalent in the asymptotic regime. That

is, at each step in the solution we let

F (ŝ, ρ) = F (ŝ, ρc − ∆) for all ρ ≤ ρc(ŝ) − ∆ . (2.28)

Let us here emphasize that these choices should not be interpreted literally as to how

exactly saturation would act on F . For example, freezing F at a constant value does

not imply that one should think of the dynamics as representing the physical result of

the saturation of some gluon occupation number at a fixed value. The whole idea of the

boundary method is that it does not matter how the linear growth is cut off. We have

chosen these two boundaries for their simplicity, not because they would represent a more

accurate representation of the true nonlinear terms compared to other possible choices.

Studying the evolution in the presence of these two boundary conditions we shall ex-

tract the universal properties of the solution that are independent of the precise conditions.

As is evident from our construction, c and ∆ can be thought of as free parameters related

to the freedom in choosing the precise way via which the missing nonlinear terms are ac-

counted for. In reality, however, these parameters are not completely free. First, they

are correlated as ∆ ∼ ln 1/c [33]. Secondly, the value of c in (2.25) cannot be completely

arbitrary. As we noted above, c should be of the same order of the constant used in (2.21),

and the latter is of order 1. We have chosen our default value to be c = 0.4, but as in the

previous works [36, 37, 56] we have also considered the possible sensitivity of the solution

to different choices of c (and ∆).

3 Results for NLL BFKL with and without saturation

3.1 Results with fixed coupling

In this section we present the results obtained using a fixed coupling, ᾱs = 0.2. We start by

studying the linear evolution equations. For the results shown in figure 2, and in subsequent

plots, we have chosen the initial condition

F0(k) = c · exp

(
− k2

k2
in

)
, (3.1)

with kin = 1GeV. Here c is the parameter in (2.25) which determines the critical value

beyond which the boundary is applied to F . We also use the logarithmic variable Y =

ln ŝ = ln s/Q2 to denote the energy dependence of the solution. The comparison between

the LL and the NLL BFKL solutions is shown in figure 2. Here the NLL solutions are
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Figure 2. Solutions to the leading and next-to-leading BFKL equations for a fixed coupling

ᾱs = 0.2 and for Y = 2, 6, 10, 14: NLL BFKL with asymmetric scale choice (solid red lines), NLL

BFKL with symmetric scale choice (dashed red lines) and LL BFKL (dotted blue lines).

shown for both the symmetric and the asymmetric scale choices. As well known, see for

example [9, 14, 57, 58], the NLL evolution is significantly slower than the leading order

evolution. We also clearly see the effects of the negative Mellin space poles in the collinear

and anti-collinear limits. For the symmetric solution (the solid blue curves in figure 2)

the collinear pole is clearly visible in the plot as the solutions turn rapidly negative at

moderately high values of the momentum k. For the asymmetric scale choice the shift in

the characteristic function (2.9) removes the collinear triple pole while there is still the

double pole. As a consequence it turns negative “later” (i.e. at higher values of k) than

the symmetric solution. On the other hand the pole at the anti-collinear end causes the

solution to turn negative at the smaller k values as clearly visible in the figure.

The apparent instability of the solution suggests that the full-linear solution might

very well be even more unstable. The precise behavior will of course depend on the exact

shape of the nonlinear terms and how these act, but it is clear that the existence of a

nonlinear damping term F 2 or F 3 can potentially cause further instabilities when F turns

negative. It is therefore not at all clear whether one would obtain any sensible results. Of

course one can imagine that the results are stable for a smaller coupling. For example it is

known that for ᾱs . 0.05 the Pomeron intercept is positive and real in the NLL case, and

this leads to an exponential growth of the solution. Such small values of αs are of course

hardly realistic.

The boundary method on the other hand is very stable by construction since the

solution below the boundary is set to a fixed value by hand. Despite this, however, we

will see below that the final result is nevertheless unstable. Note also that, the successful

implementation of the boundary method should be independent of the precise value of the

critical value c. For the LL solution in figure 2 it is clear that no matter what c is chosen,

the linear solution eventually reaches this point, and the saturation boundary therefore gets

– 15 –



J
H
E
P
1
0
(
2
0
1
1
)
1
3
8

 0.0001

 0.001

 0.01

 0.1

 1

10-2 10-1 100 101 102 103 104 105

F
(Y

,k
)

k2 (GeV2)

Figure 3. Comparison of the NLL BFKL solution with (solid red lines) and without (dotted blue

lines) the absorptive saturation boundary (2.27) for fixed ᾱs = 0.2, and Y = 2, 6, 10, 14.

implemented. The difference between various values of c is simply in the normalization of

Qs which of course is a measure of the strength of saturation (and therefore of the value of

c). For the asymmetric NLL solution (solid red lines) in figure 2, it is, however, clear that

the peak of the solution is bounded due to the solution turning negative at smaller k. In

this case if we would choose c to be say larger than 1, then it appears that the boundary

would never get applied, and consequently it would have no effect whatsoever on the linear

solution. Clearly this is a peculiarity of the unstable NLL evolution, and the results for

the fixed coupling case should therefore not be taken too seriously. What we can learn

from the fixed coupling case is on the other hand that the full non linear solution might

very well not give any sensible results (it would of course be highly desirable if this can be

checked explicitly).

Keeping these points in mind we now apply the saturation boundary to the linear

solutions shown in figure 2. In accordance with the discussion above we study the nonlinear

evolution at the next-to-leading order only with the asymmetric scale choice obtained by

applying the shifts in (2.9), (2.10) and (2.11). In figure 3 we compare the fixed coupling

NLL solutions with and without the absorptive saturation boundary. We see that the

instability of the NLL solution at lower k is not removed completely by the condition of

the absorptive boundary. For the solution at Y = 14 we see that F turns negative before

it is set to 0 by the boundary condition. As in the linear evolution the solution also turns

negative at higher k which is of course expected since the nonlinearities do not cure the

unstable high-k behavior.

Note also that the linear and nonlinear solutions differ slightly even in the very large k

region. It seems that this is due to the fact that the nonlinear solution with the saturation

boundary kills the contributions at small k which via the NLL kernel contribute negatively

to the high-k part of the solution. If this is indeed the case, we would for the second

boundary condition (2.28) expect that the difference compared to the linear solution at

larger k is somewhat smaller since in that case the contributions below the critical point

are not set to zero. We show the results for the boundary (2.28) in the left plot of figure 4
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Figure 4. Left: Comparison of the NLL BFKL solution with (solid red lines) and without (dotted

blue lines) the frozen saturation boundary (2.28) for Y = 2, 6, 10, 14. Right: Comparison of the

NLL solution with the frozen (solid red lines) saturation boundary (2.28) versus the absorptive

(dotted blue lines) saturation boundary for Y = 2, 6, 10, 14, 20. Simulations done for the fixed

coupling ᾱs = 0.2.

where we can see that this is indeed the case. In the right plot we instead compare the

solutions obtained by the two boundary conditions. Note that when Y is large enough,

also the solution obtained using the boundary (2.28) turns negative at smaller k. Thus we

see that the nonlinearities associated with the mechanism of gluon saturation do not cure

the unstable low-k behavior completely, even when they by construction stabilize the low

k region.

3.1.1 The NLL saturation scale for a fixed coupling

As is clear from above it is hard to define the saturation scale Qs beyond a certain value

of Y because of the severe instabilities of the solution. The results for the saturation

scale presented for the fixed coupling case should therefore not be taken too seriously, but

we here want to demonstrate the very large effects of the higher order corrections on the

solution. We again mention that the full nonlinear equation might be even more unstable

so it is not clear whether the standard notion of the saturation momentum even makes

sense for the chosen value of ᾱs.

The results are shown in figure 5 where we have extracted the saturation scale, Qs(Y ),

from the leading and next-to-leading order solutions using the boundary (2.28). While

the leading order evolution gives a very rapid, exponential, increase of Qs(Y ) with Y ,

the next-to-leading order evolution leads to a strongly suppressed result. Thus we can

expect the NLL corrections to the BFKL kernel to have dramatic effects for the study of

the nonlinear evolution as well, but the analysis cannot be complete until the important

running coupling effects are taken into account. As we will see below, the running of the

coupling has a rather large effect on the evolution and on the result presented above.

3.2 Results with running coupling

In the case of the running coupling we are faced with the question as to how exactly choose

the scale of the coupling. For the scale dependence of αs we shall use the one loop result
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Figure 5. The saturation scale Q2

s
(Y ) extracted from the evolution using the boundary (2.28),

for LL BFKL (blue, open circles) and NLL BFKL (red, full circles), with fixed coupling ᾱs = 0.2.

resummed to all orders, that is

αs(k) =
1

b ln
(
(k2 + µ2

IR)/Λ2
) , (3.2)

where we have inserted an infrared regulator of the Landau pole. We shall by default set

µIR = 0.7 GeV. We should immediately note that the linear evolution is sensitive to this

parameter since a smaller µIR implies an enhanced contribution from smaller momenta

which generally speeds up the growth. To check the sensitivity to µIR we have also run the

simulations with µIR = 0.4 GeV, which, as expected, speeds up the growth of the linear

solutions, but we find that to a very good accuracy it does not affect the nonlinear solutions

obtained from the saturation boundary which are therefore rather robust with respect to

the regulator.

As can be seen from the NLL BFKL equation, the natural scale in the leading part

of the kernel is given by the transverse momentum of the real gluon, q. The choice in the

NLL part of the kernel is on the other hand rather arbitrary since any difference in the

scale choice is formally of N2LL and N3LL order. However, as we shall see, this formally

higher order difference is extremely large and the solution therefore very sensitive to the

exact choice.

We have investigated different prescriptions for the running coupling. Let us write the

BFKL kernel as in (2.3) but this time extracting out the factors of ᾱs:

K(k, k′) = ᾱsK0(k, k
′) + ᾱ2

s K1(k, k
′). (3.3)

In studying the running coupling NLL evolution we have considered the following choices

(k> ≡ max(k, k′) as before)

A: ᾱs(q
2)K0(k, k

′) + ᾱ2
s(k

2
>)K1(k, k

′) (3.4)

B: ᾱs(k
2
>)K0(k, k

′) + ᾱ2
s(k

2
>)K1(k, k

′) (3.5)

C: ᾱs(k
2)K0(k, k

′) + ᾱ2
s(k

2)K1(k, k
′) (3.6)

D: ᾱs(q
2)K0(k, k

′) + ᾱ2
s(q

2)K1(k, k
′) (3.7)
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Figure 6. Full NLL BFKL solution (solid red lines) versus leading order running coupling solution

(dotted blue lines) with a running coupling using the scale choice A in (3.4) for Y = 2, 6, 10, 14.

Solid black curve is the initial condition at Y = 0. Left: Linear evolution. Right: Nonlinear

evolution using the boundary (2.28).

where in choice D, the real momentum q is used in all the real terms only (the virtual terms

are diagonal in k). In all cases the kernel K1 has been adjusted so that the expressions are

the same at the NLL level.

We find that the choices A and B give rather well behaved solutions but that C and

D lead to very unstable results which rapidly turn negative and oscillate over very large k

intervals. The differences between the choices A and B are not that large and so here we

will only present results obtained from choice A. The fact that this choice gives a stable

result is consistent with the findings of [14] where the different scale choices of the running

coupling were also investigated. We note that in this choice the NLL kernel does not

contain any terms which depend on the beta function coefficient.

The results extracted using the scale choice A above are shown in figures 6 both for the

linear and the nonlinear solutions. For the linear case we again find a very large difference

between the leading and the next-to-leading order solutions. The leading order solutions

are here obtained using a running coupling which runs with the scale q as clear from choice

A in (3.4). In this case the NLL solution seems better behaved than in the fixed coupling

case studied in the previous section. It should, however, be kept in mind that while choice

A is stable, other choices like C and D lead to unstable results. Thus the natural question

arises whether the NLL evolution including the running coupling has any predictive power

since it is extremely sensitive to corrections which are formally of higher order.

In the right plot in figure 6 we show the nonlinear solutions obtained after applying

the frozen boundary condition (2.28). Apart from the solution at the lowest Y , we see that

the running coupling leading order evolution (rcLL) has essentially the same slope as the

full NLL solution but that it again grows rather more rapidly with Y . We also compare

directly the linear and nonlinear solutions obtained from the boundary in figure 7. In

this plot, the differences between the solutions with saturation and the linear solutions
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Figure 7. Linear BFKL solution (dotted blue lines) versus solution with the boundary (solid red

lines) with a running coupling using the scale choice A in (3.4) for Y = 2, 6, 10, 14. Left: LL case.

Right: NLL case (2.28).

are better visible. In the leading logarithmic case, application of the boundary affects the

region far away from the boundary much more than in the next-to-leading scenario. This

has a prominent effect on the speeds of the front evolution which in the next-to-leading

case is much less affected by the saturation corrections.

The large sensitivity to the different scale choices in the running coupling is not un-

expected. Given the large values of the running coupling the truncation of the small-x

perturbative expansion will lead to large uncertainties. These could be avoided by setting

the scale choice via the BLM [59] scheme which reduces these uncertainties. Indeed, it has

been demonstrated that the NLL small-x evolution can be stabilized in this scheme [60].

We note however that the resulting scale in the BLM scheme has a rather large numerical

coefficient which reflects substantial differences between the MS scheme and the BLM-

MOM scheme adopted in [60]. A related observation was done in [61] where the principle

of minimal sensitivity was applied to the NLL BFKL in the process of electroproduction

of two vector mesons. There it was found that the optimal choice of the renormalization

scale is about ∼ 10Q with Q2 being the virtuality of the colliding photons [61, 62]. One

could explain this unnatural choice of scale by the fact that the higher order subleading

corrections are effectively taken into account via this procedure. This was later confirmed

by redoing the analysis [63] using the collinearly improved, resummed kernel [18], in which

case the resulting optimal scale turns out to be ∼ 3Q, which is much closer to the typical

scales involved in the process. What all this shows is that the higher order corrections are

generally very large, and that the NLL evolution effectively stabilizes only by choosing a

scale of the running coupling which is much larger than the natural choice dictated by the

relevant physical scales in the process.5

5It is indeed not strange that the NLL evolution would be well behaved in this case. Since the scale of the

coupling is so large, and consequently its strength so small, the higher order corrections are automatically

suppressed and presumably not important.
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s(Y ) extracted using the boundary (2.28) for the running coupling

solutions to the LL kernel (blue, open circles) and the full NLL kernel (red, full circles).

We also should add that the solutions in general are very sensitive to the lower cutoff

on momentum k. In the simulations presented in this section we used the cutoff k2
min =

0.1 GeV2. This sensitivity is of course due to the large value of the coupling in this regime.

It is worth noting, however, that the NLL solution does show some instability with respect

to the variation of this cutoff. Below k2
min = 0.05 GeV2 we find that the low k part of the

solution turns negative and then oscillates very strongly leading to severe instabilities (also

for the otherwise stable choices A and B). While also the value of the LL solution (and

resummed which we analyze later) increases with decreasing cutoff, in that case there is

no instability of the solution as in the NLL case. We have therefore chosen the kmin here

so that the NLL evolution gives stable results.

3.2.1 The NLL saturation scale for a running coupling

We easily extract the saturation scale using the definition (2.24) from the solution shown

in figure 6. The results are shown in figure 8 where the running coupling leading order

results are compared with the full NLL results. As we can see the differences between the

leading order and the next-to-leading order kernels are smaller than in the fixed coupling

case, but we also note that they are again generally rather large. At Y = 2, Q2
s differs by

around a factor 1.5 between the running coupling leading result and the full NLL result,

while at Y = 18 this difference has grown to a factor of almost 10. Thus we clearly see

that the next-to-leading order corrections beyond that of the running of the coupling are

very important and cannot be neglected.

Moreover, as mentioned above the scale choice A (3.4) by which the results in figure 8

have been obtained is actually the more stable one giving a steady growth of F with Y .

While the running coupling leading order solution does not give a markedly different Qs

for other choices of the scale of the coupling, the NLL solution changes dramatically, so

that we cannot even sensibly extract a saturation scale.

One might have already wondered what is the origin of these pathologies in the NLL

evolution. To this end, it is instructive to look at the NLL nonlinear equation in coordinate
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space, that is the NLL BK equation, for reasons that will be clear in what follows. The

BK equation at leading order reads

dSxy

dY
=

∫
d2zM(0)

xyz(SxzSzy − Sxy) , (3.8)

and has a straightforward interpretation. Sxy is the S-matrix for the scattering of a color

dipole (x,y) of a generic hadronic target. Under an increment dY in rapidity, a soft gluon

is emitted at the point z and we view it as a quark-antiquark pair at large Nc. Thus the

parent projectile dipole can split into two, (x,z) and (z,y), which subsequently scatter off

the target as suggested by the first term in the r.h.s., with the second corresponding to a

self-energy correction. The probability for the splitting is of order O(ᾱs) and is given by

the kernel M(0)
xyz which is known and is positive for any value of its arguments.

At NLL order the BK equation becomes (for example cf. eq. (104) in [41])

dSxy

dY
=

∫
d2zM(1)

xyz(SxzSzy − Sxy) +

∫
d2z d2w M̃(1)

xyzw(SxzSzwSwy − SxzSzy), (3.9)

where, for the sake of clarity, we have kept only the dominant terms at large Nc. Then the

above again has a nice interpretation: the parent projectile dipole (x,y) splits either into

two dipoles (x,z) and (z,y) or into three (x,z), (z,w) and (w,y), which then scatter off

the hadronic target. The probabilities for these splittings to happen are given by the two

kernels M(1) and M̃(1), with M(1) containing the leading piece M(0) of order O(ᾱs) plus

the NLL contribution of order O(ᾱ2
s), while M̃(1) is of order O(ᾱ2

s).

The problem is that a direct inspection of the two kernels reveals that they can both be-

come negative and, moreover, large in magnitude. This will happen in the collinear and/or

anticollinear limit, that is, when the emitted gluons at z and w are emitted very close to

one of the parent color sources at x or y, or very far from them. Since collinear splittings

are related to the ultraviolet behavior of the evolution, we cannot expect saturation to cure

this problem of large negative probabilities. We do not analyze this in more detail here,

since in the next section we shall see how these pathologies arise in Mellin space.

Thus our main conclusion studying the NLL evolution in the presence of saturation

effects is that the instabilities of the next-to-leading order BFKL evolution are not cured

by the presence of the nonlinear corrections. In order to obtain sensible results out of the

evolution equations we must therefore consider an improvement that can cure the insta-

bilities inherent in the formalism. As a specific model we here consider the resummation

technique presented in [14]. We thus now turn to the renormalization group improved

BFKL evolution which we shall subsequently study in the presence of saturation effects.

4 Resummed BFKL with the boundary

We begin this section by describing the resummation model presented in [14]. As we have

seen above, a resummation is needed in order to control the large higher order corrections

in the small-x evolution. After describing the method we use, and the precise equation

that it implies, we will go on to apply the saturation boundary and extract the resulting

saturation scale.
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4.1 Construction of resummed kernel

Let us first briefly recall the principles of the resummation procedure originally presented

in [14], where more details can be found. Similar approaches to resummation have been

developed in [15–17] with consistent results. The procedure consists of the resummation

of the collinear singularities at NLL small-x evolution, as well as in the incorporation of

the running coupling. The eigenvalue (2.13) contains double and triple collinear poles in

Mellin space, which are numerically very large corrections. Its approximate behavior near

the γ → 0 and γ → 1 poles is

χcoll
1 (γ) ∼ − 1

2γ3
− 1

2(1 − γ)3
+
A1(0)

γ2
+
A1(0) − b

(1 − γ)2
. (4.1)

Here A1(0) = −11/12 is coming from the nonsingular part (in momentum fraction z) of

the leading order DGLAP splitting function

γgg(ω) = αs
1

ω
+ αsA1(ω) , (4.2)

where Mellin transform has been defined as

∫ 1

0
Pgg(z)z

ωdz = γgg(ω) . (4.3)

We shall also define

∫ 1

0
P̃gg(z)z

ωdz = ᾱsA1(ω) = γgg(ω) − ᾱs

ω
. (4.4)

In (4.1), the double poles come from the DGLAP splitting function as mentioned

above, whereas the triple collinear poles come from the choice of the energy scales. The

above collinear kernel (4.1) is negative and is responsible for 90% of the corrections of

the NLL kernel in the case of the fixed coupling, that is when we set b → 0. In order to

smooth out the behavior near the collinear poles, the resummation procedure has to be

taken into account. The two basic ingredients of this resummation are the subtraction of

the above collinear poles and their replacement by the resummed expression which is due

to the nonsingular part of DGLAP, and the kinematical constraint. That is, the resummed

kernel reads

χresum(γ, ω) = χ0(γ, ω) + χcoll(γ, ω) + ᾱsχ̃1(γ) , (4.5)

with
χ0(γ, ω) = 2ψ(1) − ψ

(
γ + ω

2

)
− ψ

(
1 − γ + ω

2

)
,

χcoll(γ, ω) =
ωA1(ω)

γ + ω
2

+
ωA1(ω)

1 − γ + ω
2

,

χ̃1(γ) = χ1(γ) +
1

2
χ0(γ)

π2

sin2(πγ)
− χ0(γ)

A1(0)

γ(1 − γ)
,

(4.6)

where the last line contains subtractions of the triple (second term) and double poles (third

term) which numerically coincide with (4.1), modulo the b dependent term. In contrast to
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the LL and NLL kernels, one of the important features of the resummed equation is that it

satisfies energy conservation. Note that now the kernel eigenvalue is a function with both

γ and ω dependence. This is because the dependence on the coupling constant for some

terms has been traded off for the dependence on ω, due to the resummation.

The above eigenvalue is strictly correct for the fixed coupling case. In the running

coupling case, it is better to consider the momentum representation and perform the re-

summation of the coupling into the argument of the coupling in front of the leading order

kernel. Based on the resummed expression in Mellin space, the following proposal was

made for the kernel in momentum space (we use again the notation f to represent the

action of the kernel as in (2.7) and (2.8)):

∫ 1

x

dz

z

∫
dk′

2 K̃(z; k, k′)f

(
x

z
, k′

)
(4.7)

=

∫ 1

x

dz

z

∫
dk′

2
[
ᾱs(q

2)Kkc
0 (z;k,k′)+ᾱs(k

2
>)Kkc

c (z; k, k′)+ᾱ2
s(k

2
>)K̃1(k, k

′)
]
f

(
x

z
, k′

)
.

The different terms are as follows:

• LO BFKL with running coupling and consistency constraint (q = k − k′)

∫ 1

x

dz

z

∫
dk′

2
[
ᾱs(q

2)Kkc
0 (z;k,k′)

]
f

(
x

z
, k′

)
(4.8)

=

∫ 1

x

dz

z

∫
d2q

πq2
ᾱs(q

2)

[
f

(
x

z
, |k| +q|

)
Θ

(
k

z
−k′

)
Θ(k′−kz)−Θ(k−q)f

(
x

z
, k

)]
.

• Nonsingular DGLAP terms with consistency constraint

∫ 1

x

dz

z

∫
dk′

2
ᾱs(k

2
>)Kkc

c (z; k, k′)f

(
x

z
, k′

)

=

∫ 1

x

dz

z

∫ k2

(kz)2

dk′2

k2
ᾱs(k

2)z
k

k′
P̃gg

(
z
k

k′

)
f

(
x

z
, k′

)

+

∫ 1

x

dz

z

∫ (k/z)2

k2

dk′2

k′2
ᾱs

(
k′

2)
z
k′

k
P̃gg

(
z
k′

k

)
f

(
x

z
, k′

)
. (4.9)

• NLL part of the BFKL with subtractions included

∫ 1

x

dz

z

∫
dk′

2
ᾱ2

s(k
2
>)K̃1(k, k

′)f

(
x

z
, k′

)
(4.10)

=
1

4

∫ 1

x

dz

z

∫
dk′

2
ᾱ2

s(k
2
>)

×
{(

67

9
− π2

3

)
1

|k′2 − k2|

[
f

(
x

z
, k′

2
)
− 2k2

<

k′2 + k2
f

(
x

z
, k2

)]

+

[
− 1

32

(
2

k′2
+

2

k2
+

(
1

k′2
− 1

k2

)
ln

(
k2

k′2

))
+

4Li2
(
1 − k2

</k
2
>

)

|k′2 − k2|

−4A1(0) sgn
(
k2 − k′

2)
(

1

k2
ln

|k′2 − k2|
k′2

− 1

k′2
ln

|k′2 − k2|
k2

)
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−
(

3 +

(
3

4
− (k′2 + k2)2

32k′2k2

))∫
∞

0

dy

k2 + y2k′2
ln

∣∣∣∣
1 + y

1 − y

∣∣∣∣

+
1

k′2 + k2

(
π2

3
+ 4Li2

(
k2

<

k2
>

))]
f

(
x

z
, k′

)}

+
6ζ(3)

4

∫ 1

x

dz

z
ᾱ2

s(k
2)f

(
x

z
, k

)
.

The fact that the shifts of the collinear poles are symmetric in (4.6) is reflected by the

symmetric form of the kinematical constraint in (4.8) and (4.9). This in turn is related to

the symmetric scale choice, s0 = QAQB. As mentioned above, in our calculation we actually

use the asymmetric scale choice, s0 = Q2
A. In addition, in the kernel written above one

needs to perform additional subtractions. This is because the kernel still contains some

residual single poles. They contribute to a residual 2-loop anomalous dimension which

needs to be subtracted. For the purpose of this analysis we choose the scheme called

scheme B in [14]. It consists of a modification which adds a term with the shifted pole to

the NLL kernel with the ω-dependent coefficient

χ̃1(γ) → χ̃ω
1 (γ) = χ̃1(γ)−

(
1

γ
+

1

1 − γ

)
C(0)+

(
1

γ + ω
2

+
1

1 + ω
2 − γ

)
C(ω)[1 + ωA1(ω)] ,

(4.11)

where

C(ω) = −A1(ω)

ω + 1
+
ψ(1 + ω) − ψ(1)

ω
,

C(0) =
π2

6
−A1(0) .

(4.12)

This scheme also satisfies the energy-momentum sum rule for the extracted resummed

anomalous dimension γgg.

The change in the resummed kernel in (x, k2) space corresponding to scheme B is

obtained by taking the inverse Mellin transform of (4.11), and is given by

∫ 1

x

dz

z

∫
dk′

2
{
ᾱs(q

2)Kkc
0 (z; k, k′) + ᾱs(k

2
>)Kkc

c (z; k, k′) + ᾱ2
s(k

2
>)K̃1(k, k

′)
}
f

(
x

z
, k′

)

−
∫ 1

x

dz

z

{
C(0)

[∫ k2

0

dk′2

k2
ᾱ2

s(k
2)f

(
x

z
, k′

)
+

∫
∞

k2

dk′2

k′2
ᾱ2

s(k
′2)f

(
x

z
, k′

)]

−
[∫ k2

(kz)2

dk′2

k2
ᾱ2

s(k
2)z

k

k′
S2

(
z
k

k′

)
f

(
x

z
, k′

)

+

∫ (k/z)2

k2

dk′2

k′2
ᾱ2

s

(
k′

2)
z
k′

k
S2

(
z
k′

k

)
f

(
x

z
, k′

)]}
, (4.13)

with the function S2(z) given by

S2(z) =
1

144z

{
132 + 24π2 + z

[
−541 + 24π2 + 72z(1 + 3z)

]
− 144 ln

(
−1 +

1

z

)
ln

(
1

z

)

+12

(
ln(1 − z)

[
−1 − 2z

(
23 + z(−15 + 8z)

)
− 12(1 + z) ln(1 − z)

]
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+12z ln

(
−1+

1

z

)
ln

(
1

z

)
+2z

[
1+z(−21+5z)−6 ln(1−z)

]
ln(z)−6(−1+2z) ln2(z)

)

+144(−1 + z)

[
Li2(z) +

1

2
ln

(
1

z

)
ln

[
z

(1 − z)2

]
− π2

6

]
− 144(1 + 2z) Li2(1 − z)

}
.

(4.14)

4.2 Numerical results

In this section we present the numerical results for the evolution using the resummed kernel,

also including the saturation boundary implemented via the conditions (2.27) and (2.28)

as before. Before going on to the study of the resummed kernel in the presence of the

saturation boundary, however, let us first recall the comparison of the solutions for the

linear LL, NLL and resummed kernels which was performed in [14]. In order to compare

our different solutions to the gluon Green’s function to those obtained in [14], we use

the symmetric scale and an initial distribution of the form of a discrete delta function in

accordance with (2.2) (rather than the initial condition (3.1)). These results are shown in

figure 9. In all cases αs(q) is taken as the choice for the running coupling in the leading

term and αs(max(k, k′)) for the subleading terms (we recall that this corresponds to choice

A in (3.4)). The reduction of the NLL and resummed solutions with respect to the leading

order solution is substantial in all regions of k. As we see, the resummed solution also has a

better behavior in the large and small momentum limits as compared to the NLL solution.

This is due to the absence of the double and triple collinear poles.

Next, we proceed to the analysis including the saturation boundary. For this, as in

section 3, we use the asymmetric scale choice and the initial condition (3.1). The results

are shown in figure 10. The resummed solution grows initially rather slow which is to be

expected as the resummed prescription contains a tower of terms which are subleading for

high values of rapidity but which are nevertheless important for the phenomenologically

relevant values of smaller Y . This delay in the growth of the resummed evolution has

interesting and important consequences for the phenomenology of saturation as it clearly

implies that the growth of the saturation scale will be delayed in Y .

That the effects of saturation are thus suppressed in the resummed evolution for lower

Y is apparent in the right plot of figure 10 where the nonlinear and linear evolutions

(i.e. with and without the boundary, respectively) are compared. Clearly, for the values

of Y shown in the figure, the progress of the front is not much affected by the inclusion

of saturation. This result can be compared to the earlier results presented for the LL

and NLL evolutions in figure 7. It is then clear that saturation has a larger effect on the

front in the NLL case than in the resummed case. It is interesting that if we look at the

linear solutions only (the dotted blue lines), then at the highest rapidity in the figure,

Y = 14, the resummed solution in figure 10 is actually even slightly larger than the NLL

solution at the same rapidity in figure 7. Despite this, however, the effect of saturation is

manifestly smaller in the former. This is due to the fact that the evolution at low rapidities

is significantly slowed down in the former due to the resummation, and this implies in turn

that the saturation effects do not become important until later. We also note that the

resummed evolution is stable and there is therefore no complication or ambiguity in the
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Figure 9. The gluon Green’s function solutions to the linear BFKL equation, obtained using

a symmetric scale choice and a discrete delta initial condition. The blue dashed line is the LL

approximation, the red dashed is NLL, and the solid black is the resummed prescription. In each

case (including the LL case) the strong coupling constant is running as αs(q) in front of the leading

order term, and as αs(max(k, k′)) in front of the subleading terms. The scale k0 = 20 GeV; all the

solutions correspond to rapidity Y = 10.

extraction of the saturation scale. From the figures we also observe again the behavior at

large k which we noticed earlier in the case of the fixed coupling NLL evolution whereby

the saturated solution actually lies slightly above the linear one. The reason appears to

be due to the collinear subtractions which still imply that the solution at very large k can

turn negative. Unlike the fixed coupling NLL evolution, however, the resummed evolution

is stable, and its results are unambiguous. Moreover, the resummed prescription is not

particularly sensitive to the choice of the running coupling, again unlike the NLL evolution

which displays a high sensitivity.

4.2.1 The saturation scale from resummed approach

It is straightforward to extract the saturation scale from the above results, but let us

first look at the fixed coupling case where it is easier to make semi-analytic estimates of

the result. We can then check the consistency of the implementation by comparing these

estimates with the full numerical results.

Fixed coupling case. It is possible to calculate analytically the behavior of the satura-

tion scale as a function of rapidity in the case of fixed coupling. This was originally done

in [33], and later also using the traveling wave method in [64]. The resummed evolution
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Figure 10. Left: The NLL (dotted red lines) and resummed (solid black lines) BFKL evolutions

with the saturation boundary (2.28). In each case the strong coupling constant is running as αs(q)

in front of the leading order term, and as αs(max(k, k′)) in front of the subleading terms. The four

sets of curves correspond to Y = 2, 6, 10, 14. Right: Linear resummed BFKL solution with (solid

black lines) and without (dotted black lines) the boundary (2.28), with a running coupling, for the

same set of rapidities.

was also studied using the same methods in [34]. The full expression for fixed coupling is

Q2
s(Y ) = Q2

0 exp

(
ᾱsχ(γs, ᾱs)

1 − γs
Y − 3

2(1 − γs)
lnY

)
. (4.15)

where the “saturation anomalous dimension” γs is determined by the condition

χ(γs, ᾱs)

1 − γs
= χ′(γs, ᾱs). (4.16)

Here the prime on χ in the right hand side denotes the derivative with respect to γs.

Using this formula we can extract the rapidity dependence also for the resummed

evolution. However, in this case the collinear resummation complicates somewhat the

calculation because it introduces in the eigenfunction χ an additional dependence on the

Mellin variable ω, which is itself equal to ᾱsχ. That is, we now have a relationship,

ω = ᾱsχresum(γ, ᾱs, ω) , (4.17)

where χresum was given in (4.5). This transcendental equation is not analytically solvable

for ω, but it can be numerically solved. We define a new function χeff(γ, ᾱs) such that for

any values of γ and ᾱs,

ω = ᾱsχeff(γ, ᾱs) (4.18)

gives the value of ω that satisfies equation (4.17). The solution χeff then fills the role of χ

in equation (4.15), allowing us to calculate the rapidity dependence of the saturation scale.
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Figure 11. The saturation scale obtained using the boundary (2.28) as a function of rapidity for

the LL (blue, open circles), NLL (red, full circles) and resummed (black squares) evolutions. In

each case the strong coupling constant is running as αs(q) in front of the leading order term, and

as αs(max(k, k′)) in front of the subleading terms in the resummed and NLL cases.

As the absolute normalization of Qs is not under full control it is customary to calculate

the logarithmic derivative

λs(Y ) ≡ d lnQ2
s(Y )/Q2

0

dY
. (4.19)

It is well known that in the leading order BFKL evolution one has λs = 4.88 ᾱs, and that

γs ≈ 0.37.

Constructing the “effective” eigenfunction, χeff , numerically, we have calculated λs for

different values of ᾱs for the resummed evolution. For rapidities up to 50 units we find

that λs is given by 0.308 for ᾱs = 0.1 and 0.528 for ᾱs = 0.2. If only the leading term

in (4.15) is kept then these numbers increase to 0.361 and 0.580 respectively. From the full

numerical solution we instead find the numbers 0.322 and 0.558 respectively. Notice that

these numbers are still rather below the leading order asymptotic result which indicates the

importance of the non asymptotic corrections even up to relatively large Y . That the cal-

culation slightly underestimates the slope obtained from simulation data seems reasonable

because the highest order corrections that we are ignoring in the calculation are likely to

be positive. In general, however, the calculation is rather consistent with the simulations.

The running coupling case and the full numerical solutions. In figure 11 we

present our main result, namely the saturation scale as a function of the rapidity for the

LL, NLL and resummed prescriptions. We here include only the results obtained using the

boundary (2.28) for the resummed case. Let us mention that the different boundaries lead

to different normalizations of the extracted saturation scales. This difference in normaliza-

tion is due to the evolution only for the lowest values of Y . For the leading order solution

for example, we find that the solutions obtained from different boundary prescriptions have

the same Y dependence for Y & 6 (of course the exact numbers can depend on the initial
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Figure 12. The logarithmic derivative of the saturation momentum as a function of rapidity for the

LL (blue line), NLL (red line), and resummed (black line) evolutions obtained using the boundary

condition (2.28). In each case the strong coupling constant is running as αs(q) in front of the

leading order term, and as αs(max(k, k′)) in front of the subleading terms in the resummed and

NLL cases.

condition). For the resummed evolution this number should be slightly higher due to the

delayed evolution. The overall differences are not that large, however.

We see from figure 11 that the saturation scale obtained from the resummed evolution

is suppressed at lower rapidities compared to the NLL result, though it should again be

kept in mind that the NLL solution is generally unstable. In addition, also the absolute

normalization of Qs cannot be taken too seriously since it depends very much on the exact

definition of Qs. What is clear, however, is that the resummed result is suppressed for

the smallest rapidities due to the large-x terms in the evolution. The “plateau” observed

for the resummed saturation scale at lower rapidities in figure 11 can be attributed to the

previously mentioned “dip” in the gluon splitting function. While the details of the results

in figure 11 at the smallest Y inevitably depend on the exact initial condition and also the

boundary condition (the type of the boundary and the numerical parameters chosen for

given boundary), we have checked that the plateau of the saturation scale in the resummed

case also appears in case we change the boundary or when we consider a different initial

condition (in particular we have considered also an x-dependent initial condition which

does not appear to wash out the plateau).

We next show in figure 12 the logarithmic derivative of the saturation momentum, λs,

which was defined in (4.19). We notice that the RG result is smaller than the LL one in

the asymptotic region, and that it approaches it slowly from below in agreement with the

results in [34]. However, for values of Y up to around 15, there is a discrepancy with the

findings of [34] which appears to be due to the presence of the non-asymptotic contributions

in our numerical treatment. It is indeed clear from figure 12 that the large-x terms play

a rather important role for the resummed result, as the red curve makes a sharp turn and

exceeds the blue curve of the leading order result for smaller rapidities. Even though the

“speed” of the saturation scale thus defined is relatively large for the resummed evolution

for Y . 10, notice that the saturation scale itself is small as is evident from figure 11.
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We thus see that the preasymptotic behavior of the resummed solution has important

consequences for the study of saturation. How far exactly the plateau extends in Y is

hard to answer in our present application of the saturation boundary. To answer this

question exactly, we would need to perform a serious phenomenological study where all

the unknown parameters would be fitted to data. Regardless of the exact values of the

parameters, however, it seems to be clear that resummation is needed for sensible results,6

and that it implies that the growth of the saturation scale is delayed.

5 Summary

In this work we have studied small-x evolution in the presence of saturation beyond the

LL order. We have performed our analysis by self-consistently solving the linear BFKL

evolution with proper boundary conditions; this is a justified procedure so long as we are

interested in determining the energy dependence of the saturation momentum Qs, and

any observable under consideration for momenta above (but also close to) Qs. We have

found that the NLL corrections are large and that it is therefore not enough to keep

only those next-to-leading terms related to the running of the coupling. Moreover, and as

expected from a direct inspection of the NLL BK equation or from the well-known behavior

of the NLL BFKL equation, the corrections can become negative in certain regimes of

the transverse (momentum or coordinate) space and the NLL analysis is unstable. Thus

we have used the renormalization group improved evolution kernel which resums all the

dominant NnLL contributions arising in the collinear (and anticollinear) limit, for all n ≥ 2,

and has a stable behavior. In accordance with previous expectations we do find that at high

rapidities the running coupling results for the RG improved evolution converge to those

of the LL evolution for the logarithmic derivative of the saturation momentum. However,

for smaller values of the rapidity, that is for values up to Y = 10 or 15, we find significant

deviations from the asymptotic and the pure running coupling results. At least for the

initial conditions studied, we find that the saturation momentum does not grow in the first

few units of the rapidity interval, and this is presumably the manifestation in the context

of saturation of the well-known “dip” of the gluon-gluon splitting function. From that

point on, Qs increases rather fast for the next few units until it becomes reliable to use

the asymptotic expressions. At this stage, we do not know if our result is robust for all

types of hadrons, e.g. for a large nucleus, and if it is likely to change when one properly

includes the relevant impact factors. However, it is an interesting phenomenon which, to

our knowledge, has not been studied so far and clearly deserves further investigation.
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