195 research outputs found
A compact high-flux cold atom beam source
We report on an efficient and compact high-flux Cs atom beam source based on
a retro-reflected two-dimensional magneto-optical trap (2D MOT). We realize an
effective pushing field component by tilting the 2D MOT collimators towards a
separate three-dimensional magneto-optical trap (3D MOT) in ultra-high vacuum.
This technique significantly improved 3D MOT loading rates to greater than atoms/s using only 20 mW of total laser power for the source. When
operating below saturation, we achieve a maximum efficiency of atoms/s/W
Spinor Dynamics-Driven Formation of a Dual-Beam Atom Laser
We demonstrate a novel dual-beam atom laser formed by outcoupling oppositely
polarized components of an F=1 spinor Bose-Einstein condensate whose Zeeman
sublevel populations have been coherently evolved through spin dynamics. The
condensate is formed through all-optical means using a single-beam running-wave
dipole trap. We create a condensate in the field-insensitive state, and
drive coherent spin-mixing evolution through adiabatic compression of the
initially weak trap. Such dual beams, number-correlated through the angular
momentum-conserving reaction , have been
proposed as tools to explore entanglement and squeezing in Bose-Einstein
condensates, and have potential use in precision phase measurements.Comment: 4 pages, 4 figure
Three-dimensional Gross-Pitaevskii solitary waves in optical lattices: stabilization using the artificial quartic kinetic energy induced by lattice shaking
In this Letter, we show that a three-dimensional Bose-Einstein solitary wave
can become stable if the dispersion law is changed from quadratic to quartic.
We suggest a way to realize the quartic dispersion, using shaken optical
lattices. Estimates show that the resulting solitary waves can occupy as little
as -th of the Brillouin zone in each of the three directions and
contain as many as atoms, thus representing a \textit{fully
mobile} macroscopic three-dimensional object.Comment: 8 pages, 1 figure, accepted in Phys. Lett.
Conservation tillage in organic farming
Organic farmers are interested in adopting conservation tillage to preserve soil quality and fertility and to prevent soil erosion. Within the framework of a French national study, we compared conventional (ploughing) and conservation tillage systems in organic farming for arable and vegetable cropping systems. Field experiments and on-farm surveys were conducted in several regions of France in order to assess the effects of different tillage systems on soil fertility (physical, chemical, biological) and on weed and crop development. Conservation tillage techniques induced a more compact soil, an increase of carbon and microorganisms in the first soil layer, and an increase of earthworm biomass for very superficial tillage. Weed control was only a major problem for the very superficial tillage, which in turn generated lower crop yields than conventional tillage. The main issues raised by this programme deal with the long-term effects of these techniques on soil fertility, and the improvement of conservation tillage techniques in organic farming
Breakdown of the scale invariance in the vicinity of Tonks-Girardeau gas
In this article, we consider the monopole excitations of the harmonically
trapped Bose gas in the vicinity of the Tonks-Girardeau limit. Using
Girardeau's Fermi-Bose duality and subsequently an effective fermion-fermion
odd-wave interaction, we obtain the dominant correction to the
scale-invariance-protected value of the excitation frequency, for
microscopically small excitation amplitudes. We produce a series of diffusion
Monte Carlo results that confirm our analytic prediction for three particles.
And less expectedly, our result stands in excellent agreement with the result
of a hydrodynamic simulation of the microscopically large but macroscopically
small excitations.Comment: 8 pages, 3 figure
Shell potentials for microgravity Bose-Einstein condensates
Extending the understanding of Bose-Einstein condensate (BEC) physics to new
geometries and topologies has a long and varied history in ultracold atomic
physics. One such new geometry is that of a bubble, where a condensate would be
confined to the surface of an ellipsoidal shell. Study of this geometry would
give insight into new collective modes, self-interference effects,
topology-dependent vortex behavior, dimensionality crossovers from thick to
thin shells, and the properties of condensates pushed into the ultradilute
limit. Here we discuss a proposal to implement a realistic experimental
framework for generating shell-geometry BEC using radiofrequency dressing of
magnetically-trapped samples. Such a tantalizing state of matter is
inaccessible terrestrially due to the distorting effect of gravity on
experimentally-feasible shell potentials. The debut of an orbital BEC machine
(NASA Cold Atom Laboratory, aboard the International Space Station) has enabled
the operation of quantum-gas experiments in a regime of perpetual freefall, and
thus has permitted the planning of microgravity shell-geometry BEC experiments.
We discuss specific experimental configurations, applicable inhomogeneities and
other experimental challenges, and outline potential experiments.Comment: 6 pages, 3 figure
Observation of ultracold atomic bubbles in orbital microgravity
Substantial leaps in the understanding of quantum systems have been driven by exploring geometry, topology, dimensionality and interactions in ultracold atomic ensembles1–6. A system where atoms evolve while confined on an ellipsoidal surface represents a heretofore unexplored geometry and topology. Realizing an ultracold bubble—potentially Bose–Einstein condensed—relates to areas of interest including quantized-vortex flow constrained to a closed surface topology, collective modes and self-interference via bubble expansion7–17. Large ultracold bubbles, created by inflating smaller condensates, directly tie into Hubble-analogue expansion physics18–20. Here we report observations from the NASA Cold Atom Lab21 facility onboard the International Space Station of bubbles of ultracold atoms created using a radiofrequency-dressing protocol. We observe bubble configurations of varying size and initial temperature, and explore bubble thermodynamics, demonstrating substantial cooling associated with inflation. We achieve partial coverings of bubble traps greater than one millimetre in size with ultracold films of inferred few-micrometre thickness, and we observe the dynamics of shell structures projected into free-evolving harmonic confinement. The observations are among the first measurements made with ultracold atoms in space, using perpetual freefall to explore quantum systems that are prohibitively difficult to create on Earth. This work heralds future studies (in orbital microgravity) of the Bose–Einstein condensed bubble, the character of its excitations and the role of topology in its evolution
Exploring the limits of ultracold atoms in space
Existing space-based cold atom experiments have demonstrated the utility of microgravity for improvements in observation times and for minimizing the expansion energy and rate of a freely evolving coherent matter wave. In this paper we explore the potential for space-based experiments to extend the limits of ultracold atoms utilizing not just microgravity, but also other aspects of the space environment such as exceptionally good vacuums and extremely cold temperatures. The tantalizing possibility that such experiments may one day be able to probe physics of quantum objects with masses approaching the Planck mass is discussed
Dual catalytic decarboxylative allylations of α-amino acids and their divergent mechanisms
This is the peer reviewed version of the following article: Lang, S. B., O'Nele, K. M., Douglas, J. T. and Tunge, J. A. (2015), Dual Catalytic Decarboxylative Allylations of α-Amino Acids and Their Divergent Mechanisms. Chem. Eur. J., 21: 18589–18593. doi:10.1002/chem.201503644, which has been published in final form at http://doi.org/10.1002/chem.201503644. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.The room temperature radical decarboxylative allylation of N-protected α-amino acids and esters has been accomplished via a combination of palladium and photoredox catalysis to provide homoallylic amines. Mechanistic investigations revealed that the stability of the α-amino radical, which is formed by decarboxylation, dictates the predominant reaction pathway between competing mechanisms
- …
