14,341 research outputs found
Investigation of hypersonic shock-induced combustion in a hydrogen-air system
A numerical study is conducted to simulate the ballistic range experiments at Mach 5.11 and 6.46. The flow field is found to be unsteady with periodic instabilities originating in the stagnation zone. The unsteadiness of the flow field decreased with increase in the Mach number, thus indicating that it is possible to stabilize such flow fields with a high degree of overdrive. The frequency of periodic instability is determined using Fourier power spectrum and is found to be in good agreement with the experimental data. The physics of the instability is explained by the wave interaction models available in the literature
Studies of the acoustic transmission characteristics of coaxial nozzles with inverted velocity profiles, volume 1
The efficiency of internal noise radiation through coannular exhaust nozzle with an inverted velocity profile was studied. A preliminary investigation was first undertaken to: (1) define the test parameters which influence the internal noise radiation; (2) develop a test methodology which could realistically be used to examine the effects of the test parameters; (3) and to validate this methodology. The result was the choice of an acoustic impulse as the internal noise source in the in the jet nozzles. Noise transmission characteristics of a nozzle system were then investigated. In particular, the effects of fan nozzle convergence angle, core extention length to annulus height ratio, and flow Mach number and temperatures were studied. The results are presented as normalized directivity plots
Chiral separation in microflows
Molecules that only differ by their chirality, so called enantiomers, often
possess different properties with respect to their biological function.
Therefore, the separation of enantiomers presents a prominent challenge in
molecular biology and belongs to the ``Holy Grail'' of organic chemistry. We
suggest a new separation technique for chiral molecules that is based on the
transport properties in a microfluidic flow with spatially variable vorticity.
Because of their size the thermal fluctuating motion of the molecules must be
taken into account. These fluctuations play a decisive role in the proposed
separation mechanism
Detection of Multi-drug Resistant \u3cem\u3eEscherichia coli\u3c/em\u3e in the Urban Waterways of Milwaukee, WI
Urban waterways represent a natural reservoir of antibiotic resistance which may provide a source of transferable genetic elements to human commensal bacteria and pathogens. The objective of this study was to evaluate antibiotic resistance of Escherichia coli isolated from the urban waterways of Milwaukee, WI compared to those from Milwaukee sewage and a clinical setting in Milwaukee. Antibiotics covering 10 different families were utilized to determine the phenotypic antibiotic resistance for all 259 E. coli isolates. All obtained isolates were determined to be multi-drug resistant. The E. coli isolates were also screened for the presence of the genetic determinants of resistance including ermB (macrolide resistance), tet(M) (tetracycline resistance), and β-lactamases (blaOXA, blaSHV, and blaPSE). E. coli from urban waterways showed a greater incidence of antibiotic resistance to 8 of 17 antibiotics tested compared to human derived sources. These E. coli isolates also demonstrated a greater incidence of resistance to higher numbers of antibiotics compared to the human derived isolates. The urban waterways demonstrated a greater abundance of isolates with co-occurrence of antibiotic resistance than human derived sources. When screened for five different antibiotic resistance genes conferring macrolide, tetracycline, and β-lactam resistance, clinical E. coli isolates were more likely to harbor ermB and blaOXA than isolates from urban waterway. These results indicate that Milwaukee’s urban waterways may select or allow for a greater incidence of multiple antibiotic resistance organisms and likely harbor a different antibiotic resistance gene pool than clinical sources. The implications of this study are significant to understanding the presence of resistance in urban freshwater environments by supporting the idea that sediment from urban waterways serves as a reservoir of antibiotic resistance
Physisorption of Nucleobases on Graphene
We report the results of our first-principles investigation on the
interaction of the nucleobases adenine (A), cytosine (C), guanine (G), thymine
(T), and uracil (U) with graphene, carried out within the density functional
theory framework, with additional calculations utilizing Hartree--Fock plus
second-order Moeller-Plesset perturbation theory. The calculated binding energy
of the nucleobases shows the following hierarchy: G > T ~ C ~ A > U, with the
equilibrium configuration being very similar for all five of them. Our results
clearly demonstrate that the nucleobases exhibit significantly different
interaction strengths when physisorbed on graphene. The stabilizing factor in
the interaction between the base molecule and graphene sheet is dominated by
the molecular polarizability that allows a weakly attractive dispersion force
to be induced between them. The present study represents a significant step
towards a first-principles understanding of how the base sequence of DNA can
affect its interaction with carbon nanotubes, as observed experimentally.Comment: 7 pages, 3 figure
Pressure-induced alpha-to-omega transition in titanium metal: A systematic study of the effects of uniaxial stress
We investigated the effects of uniaxial stress on the pressure-induced
alpha-to-omega transition in pure titanium (Ti) by means of angle dispersive
x-ray diffraction in a diamond-anvil cell. Experiments under four different
pressure environments reveal that: (1) the onset of the transition depends on
the pressure medium used, going from 4.9 GPa (no pressure medium) to 10.5 GPa
(argon pressure medium); (2) the a and w phases coexist over a rather large
pressure range, which depends on the pressure medium employed; (3) the
hysteresis and quenchability of the w phase is affected by differences in the
sample pressure environment; and (4) a short term laser-heating of Ti lowers
the alpha-to-omega transition pressure. Possible transition mechanisms are
discussed in the light of the present results, which clearly demonstrated the
influence of uniaxial stress in the alpha-to-omega transition.Comment: 16 pages, 6 figures, 1 tabl
Magnetoresistance behavior of a ferromagnetic shape memory alloy: Ni_1.75Mn_1.25Ga
A negative-positive-negative switching behavior of magnetoresistance (MR)
with temperature is observed in a ferromagnetic shape memory alloy
Ni_1.75Mn_1.25Ga. In the austenitic phase between 300 and 120 K, MR is negative
due to s-d scattering. Curiously, below 120K MR is positive, while at still
lower temperatures in the martensitic phase, MR is negative again. The positive
MR cannot be explained by Lorentz contribution and is related to a magnetic
transition. Evidence for this is obtained from ab initio density functional
theory, a decrease in magnetization and resistivity upturn at 120 K. Theory
shows that a ferrimagnetic state with anti-ferromagnetic alignment between the
local magnetic moments of the Mn atoms is the energetically favoured ground
state. In the martensitic phase, there are two competing factors that govern
the MR behavior: a dominant negative trend up to the saturation field due to
the decrease of electron scattering at twin and domain boundaries; and a weaker
positive trend due to the ferrimagnetic nature of the magnetic state. MR
exhibits a hysteresis between heating and cooling that is related to the first
order nature of the martensitic phase transition.Comment: 17 pages, 5 figures. Accepted in Phys. Rev.
Maximum flow and topological structure of complex networks
The problem of sending the maximum amount of flow between two arbitrary
nodes and of complex networks along links with unit capacity is
studied, which is equivalent to determining the number of link-disjoint paths
between and . The average of over all node pairs with smaller degree
is for large with a constant implying that the statistics of is related to the
degree distribution of the network. The disjoint paths between hub nodes are
found to be distributed among the links belonging to the same edge-biconnected
component, and can be estimated by the number of pairs of edge-biconnected
links incident to the start and terminal node. The relative size of the giant
edge-biconnected component of a network approximates to the coefficient .
The applicability of our results to real world networks is tested for the
Internet at the autonomous system level.Comment: 7 pages, 4 figure
- …
