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Chiral separation in microflows
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Molecules that only differ by their chirality, so called enantiomers, often possess different prop-
erties with respect to their biological function. Therefore, the separation of enantiomers presents a
prominent challenge in molecular biology and belongs to the “Holy Grail” of organic chemistry. We
suggest a new separation technique for chiral molecules that is based on the transport properties
in a microfluidic flow with spatially variable vorticity. Because of their size the thermal fluctuating
motion of the molecules must be taken into account. These fluctuations play a decisive role in the
proposed separation mechanism.

PACS numbers: 47.85.Np, 05.60.Cd, 05.10.Gg, 05.40.Jc

The main established methods of enantiomer separa-
tion are gas or liquid chromatography and capillary elec-
trophoresis [1]. In both cases specific chiral filling ma-
terials are used to obtain different elusion times of the
enantiomers. Moreover, long columns are needed through
which the enantiomers are dragged by a large pressure or
a high voltage difference. Chemically less specific meth-
ods that work with less substance and that do not require
high voltages or pressure would be of great advantage.

During the last ten years the development of microfab-
ricated fluid devices has experienced enormous progress
[2]. New ideas how to manipulate small amounts of flu-
ids and substances therein have been suggested [3]. Re-
cently, it has been demonstrated that the agitation of flu-
ids by surface acoustic waves on piezoelectric substrates
presents a versatile method of manipulating and control-
ling the flow of small amounts of a fluid [4, 5].

Various separation mechanisms have been proposed.
The separation according to size was predicted for par-
ticles in a fluid that is periodically pumped through an
array of parallel cylindrical pores with ratchet shaped
cylinder radii [6, 7] and experimentally corroborated in
Ref. [8]. de Gennes showed that a chiral crystal floating
on a liquid surface or gliding on a solid surface under
the influence of an external force will generally move in
a direction that is specific for the chirality of the crystal
[9]. For molecules, de Gennes argued thermal fluctua-
tions would destroy this effect [9]. In the present letter
we propose a different mechanism that uses the construc-
tive influence of thermal noise in combination with the
nonlinear dynamics of molecules in a flow field to attain
a separation of opposite chiral partners.

Inertial forces acting on a suspended point-like parti-
cle are generally small [10] and can be neglected. Conse-
quently, the particle is advectively transported with the
fluid velocity at the particle’s actual position. For an
incompressible fluid, the particle motion then is volume
conserving, and, as a consequence, attractors do not ex-
ist [11]. For small particles, diffusion provides another
transport mechanism, which tends to level out concen-
tration differences of suspended particles. In the case of
a point particle, diffusion in any incompressible flow re-
sults in a homogeneous distribution if external forces like

gravity or electric fields are absent.

A contrasting picture results for extended particles.
The local velocity of a surface point of an extended par-
ticle need not coincide with the fluid velocity that one
would observe at this point in the absence of the par-
ticle. As a consequence, the volume of the state space
spanned by the particle’s degrees of freedom is no longer
conserved by the dynamics, which, as a result may dis-
play attractors for stationary flow fields, in spite of the
fact that the dynamics is reversible [12]. In general, sev-
eral attractors will coexist. Which of them is approached
after sufficiently long time depends on the initial condi-
tions. If the particle is still small, say with a diameter of
1 µm or less, thermal noise at ambient temperature will
destroy very weak attractors and populate stronger ones,
with weights depending on the stability of the attractors.

In order to illustrate the working principle, we study
a model describing the motion of an extended planar ob-
ject in a two dimensional incompressible stationary flow.
This object, or “molecule” as we will call it, differs from
its chiral partners only in the sequence of three spherical
“atoms” with different friction coefficients. For a chiral
molecule the mirror image does not match with the orig-
inal molecule upon any motion in the plane. It is the
dependence of the transport properties on the chirality
which is in the focus of this paper.

At short times, the differences between the dynamics of
chiral partners possibly are rather small but at long times
they will lead to different attractors with different stabil-
ity properties. With the omnipresence of thermal noise
in the fluid these different stability patterns will cause
spatial distributions that are different for chiral partners
to an extent that they can be used for an effective chiral
separation. This is a robust mechanism that also works
in three dimensions.

Motion of an extended molecule in a flowing fluid.

We consider three atoms with positions xi, i = 1, 2, 3
that are rigidly connected, see Fig. 1. The force on the
ith particle exerted by the fluid moving with velocity
v(x) is assumed to be proportional to the relative ve-
locity of the particle ẋi(t) with respect to the fluid, i.e.,
F

fl
i = γi (v(xi) − ẋi) where γi denotes the friction coef-

ficient of the ith atom, and v(x) is the velocity field of
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FIG. 1: A chiral molecule consisting of three atoms with dif-
ferent friction coefficients γi on an equilateral triangle at po-
sitions xi = X + ri(ϕ). The mirror particle differs only in
the sequence of the friction coefficients. The rigid rods (gray
lines) of lengths d maintain the structure.

−1

1

−1 1

y

x

FIG. 2: The streaming pattern given by eq. (7) is shown in one
unit cell. The streamlines circulate within adjacent quarters
in opposite directions.

the fluid in absence of the atoms. In a fluid at tem-
perature T , the frictional forces are always accompa-
nied by random forces, which, for the sake of simplic-
ity, are assumed to be independent Gaussian thermal
white noises, ξi(t), with cartesian components ξi,α(t),
α = 1, 2, satisfying the fluctuation-dissipation relation
〈ξi,α(t)ξj,β(s)〉 = 2γikBT δi,j δα,β δ(t−s). We also have to
take into account forces Fi,j caused by the jth atom and
acting on the ith one that maintain the rigid structure
of the molecule. We neglect hydrodynamic interactions
between the individual atoms [13] as well as small and
very short-lived inertial terms [10]. The particle motion
then follows from the balance of forces on each particle

γi [v(xi) − ẋi] +
∑

j 6=i

Fi,j + ξi(t) = 0 (1)

The actual degrees of freedom are translations of the
molecule as a whole, and rigid rotations. The momen-
tary position of the molecule is conveniently specified by
the center of friction X =

∑

i γ̃ixi where γ̃i = γi/
∑

j γj

are normalized friction coefficients, and by an angle ϕ
fixing the orientation, see Fig. 1. The positions of the

atoms can then be recovered as

xi = X + ri(ϕ) = X + R(ϕ)r
(0)
i (2)

where the vector ri(ϕ) pointing from X to the ith atom
results from a rotation R(ϕ) of a reference configuration

r
(0)
i . The center of friction and the orientation then obey

coupled Langevin equations reading

Ẋ =
∑

i

γ̃i v(X + ri(ϕ)) + ξ
X

, (3)

ϕ̇ =
∑

i

γ̃ir
−2
γ r

′
i(ϕ) · v(X + ri(ϕ)) + ξϕ (4)

The dot and the prime denote derivatives with respect
to time and angle, respectively. The length rγ =
(
∑

γ̃ir
2
i (ϕ)

)1/2
is independent of ϕ and represents an in-

variant property of the molecule. The fluctuating forces
ξ
X

(t) and ξϕ(t) are linear combinations of the original
ones. They vanish on average, are independent of each
other, Gaussian distributed, and therefore characterized
by their correlation functions reading

〈ξXα(t)ξXβ(s)〉 = 2D δα,β δ(t − s), (5)

〈ξϕ(t)ξϕ(s)〉 = 2D r−2
γ δ(t − s) (6)

where the noise strength is given by D = kBT/
∑

i γi.

In distinct contrast to the two-dimensional velocity
field v(x), the three-dimensional vector field that gov-
erns the motion of an extended particle generally has a
non-vanishing divergence. It is therefore possible that in
the absence of the random forces the long-time dynamics
is ruled by one or more attractors which are approached
from different initial conditions. The actual structure of
the deterministic dynamics will depend on the properties
of the molecule and on the considered velocity field v(x).

The velocity field. The velocity field of an incompress-
ible two-dimensional fluid can always be expressed in
terms of a scalar stream function Ψ(x, y). For the sake
of definiteness we here choose a periodic stream function

Ψ(x, y) =
V0L0 sin(πx/L0) sin(πy/L0)

(

2 − cos(πx/L0)
)(

3 − 2 cos(πy/L0))
. (7)

The velocity field follows as vx(x) = ∂Ψ(x)/∂y, vy(x) =
−∂Ψ(x)/∂x. It is the divergence free solution of the
Stokes equation [13] for a fluid that is driven by a
quadrupolar force density which we do not specify here.
Within a unit cell (x, y ∈ [−1, 1]) it reproduces the
properties of the experimental streaming pattern in Ref.
[4]. We use dimensionless variables with L0 = 1 and

V0 =
√

15. The advective transport follows the lines of
constant Ψ. Therefore, a unit cell contains four invariant
quarters, each containing an eddy. Because the stream
function transforms oddly under reflections at the co-
ordinate axes, eddies in two adjacent quarters have an
opposite parity according to the sense of rotation.
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FIG. 3: (color). The deterministic motion of chiral partner molecules (top vs. bottom row) is visualized by the respective
domains of attraction (left panels) and the corresponding attractors. The molecule has the shape of an equilateral triangle
with side-length d=0.2 and friction coefficients (γ1, γ2, γ3) = (1/6, 1/3, 1/2). Its chiral partner has the sequence (γ1, γ2, γ3) =
(1/3, 1/6, 1/2). Their motions are determined by the deterministic parts of the eqs. (3, 4) with the velocity field (7). The left
column shows cuts through the domains of attraction at ϕ = 2 within the upper right quarter of the unit cell, see Fig. 2. The
respective attractors are depicted in the right panels with corresponding colors. Trajectories starting from white regions do not
approach the indicated quarter. Note that the domain of attraction of the additional red attractor in the bottom row extends
beyond the upper right quarter and consequently attracts trajectories starting outside of this quarter.

Deterministic transport of finite particles. As dis-
cussed above, the motion of finite, but still small, parti-
cles is qualitatively different from the advective motion of
point particles. The deterministic dynamics in the three-
dimensional state space spanned by the two translational
and one orientational degrees of freedom is no longer con-
servative. It can be partitioned into different domains of
attraction. The detailed structure of the attractors and
of their corresponding domains of attraction depends on
the size of the molecule, on the magnitude of the friction
coefficients and also on their sequence and therefore on
the chirality of the molecule. for a pair of enantiomers
Fig. 3 depicts cuts of the domains of attraction at a fixed
orientation ϕ and the corresponding attractors which are
confined to one quarter. In the particular case shown in
Fig. 3, we found three such attractors for one enantiomer,
two of which are period-one attractors, i.e. after one full
rotation of ϕ the molecule’s center of friction has returned
to its initial position. The third attractor is chaotic. In
contrast, the respective chiral partner possesses four at-
tractors in this quarter. Three of them are similar to
the attractors of the first enantiomer: The chaotic at-
tractor and one of the period-one attractors still exist;
the other period-one attractor is replaced by one with
winding number 42/43 (42 full rotations of ϕ correspond
to 43 revolutions of X). The fourth attractor is peri-
odic: Here, the orientation ϕ performs a libration and
the translational degrees of freedom move in relatively
close distance from the boundary of the considered quar-
ter. This and the chaotic attractors “collect” also points
from adjacent quarters, see the left panel of the bottom

row in Fig. 3. In contrast, for the chiral partner only a
very small set of points from outside the considered quar-
ter is attracted, see the left panel of the top row in Fig. 3.
For smaller molecules also more complicated trajectories
exist that stay close to the boundaries of several quar-
ters. However, also these trajectories differ for opposite
chiral partners and populate preferentially quarters with
a parity that is specific for the chirality of the molecule.

Influence of noise. According to their different posi-
tions and geometric structures, the attractors of unlike
enantiomers have different strengths within a quarter of
definite parity, and consequently differ in stability with
respect to thermal noise. At sufficiently weak noise al-
most all molecules settle into the attractor with highest
stability, provided the system is given sufficient time to
relax into its stationary state. Fig. 4 depicts the resulting
unequal distributions of a specific chiral molecule in quar-
ters of different parity. For the transport of a molecule
from a quarter with the “wrong” to one with the “fitting”
parity the attractors close to the quarters’ boundaries,
like the red one in Fig. 3, may act as a turnstile.

Because transitions from any less stable to the most
stable attractor will become increasingly rare with de-
creasing noise, the approach to stationarity may pro-
ceed slowly. On the other hand, with higher noise lev-
els “wrong” attractors will be populated with increasing
probability and therefore the separation quality deterio-
rates. In Fig. 5 the time to reach the stationary state
and the separation performance are compared as they
vary with the noise strength, which is quantified by the
dimensionless quantity D/L0V0 = kBT/

∑

i γiL0V0. It
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FIG. 4: For a single chiral molecule with size d = 0.2
the stationary probability density integrated over all orien-
tations ϕ exhibits a pronounced asymmetry with respect
to quarters of different parity. The friction coefficients are
(γ1, γ2, γ3) = (1/6, 1/3, 1/2) and the dimensionless noise
strength is D/L0V0 = 10−3.
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FIG. 5: The selectivity as given by the fraction of numbers of
molecules with different chirality N+/N

−
in one quarter de-

creases with increasing noise strength D/L0V0. The time τ it
needs to reach the stationary value increases with decreasing
noise strength. For the parameters of the molecule see Fig. 3.
The error bars indicate the standard deviation as it results
from the numerical simulation.

is therefore not only determined by the temperature but

also by the total friction, as well as by the characteristic
eddy size and the velocity scale. For example, to achieve
a selectivity of N+/N− = 1.5 within 15 min in water at
room temperature (viscosity η = 1g/cms) for this model
flow an eddy size of L0 ≈ 2µm is required. The size of the
molecules then is fixed to d ≈ 0.4µm. This eddy size is
smaller than what can presently be attained experimen-
tally but it should be realizable in the near future [14].
For this rough estimate we have assumed the validity of
the Stokes law. With larger velocity gradients we also
expect to improve the separability for smaller objects.

Conclusions. We elucidated the transport properties of
a chiral extended object in a two-dimensional model flow
in view of efficient enantiomer separation. As a result,
we propose to start from a uniform distribution of the
racemic mixture and wait until the combined action of
the advective transport and of the thermal fluctuations
has led to a stationary distribution. In this stationary
state, quarters with different parity will contain different
amounts of a specific entantiomer.

There are several aspects already in two dimensions
which we have not addressed with this investigation. It
is nevertheless clear that this model does capture the rele-
vant aspects of symmetry and of the stochastic dynamics
of small but extended chiral particles. We are sure that
these very aspects do also lead to chiral separation in
more realistic models describing e.g. spatially extended
atoms, hydrodynamic interactions between them, as well
as flexible bonds. Moreover, we are convinced that the
same mechanisms also work in a three dimensional heli-
cal flow again leading to enantiomer separation. Surface
acoustic waves provide a promising tool to produce such
flow patterns.
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