21 research outputs found

    Two Alleles of NF-κB in the Sea Anemone Nematostella vectensis Are Widely Dispersed in Nature and Encode Proteins with Distinct Activities

    Get PDF
    BACKGROUND. NF-κB is an evolutionarily conserved transcription factor that controls the expression of genes involved in many key organismal processes, including innate immunity, development, and stress responses. NF-κB proteins contain a highly conserved DNA-binding/dimerization domain called the Rel homology domain. METHODS/PRINCIPAL FINDINGS. We characterized two NF-κB alleles in the sea anemone Nematostella vectensis that differ at nineteen single-nucleotide polymorphisms (SNPs). Ten of these SNPs result in amino acid substitutions, including six within the Rel homology domain. Both alleles are found in natural populations of Nematostella. The relative abundance of the two NF-κB alleles differs between populations, and departures from Hardy-Weinberg equilibrium within populations indicate that the locus may be under selection. The proteins encoded by the two Nv-NF-κB alleles have different molecular properties, in part due to a Cys/Ser polymorphism at residue 67, which resides within the DNA recognition loop. In nearly all previously characterized NF-κB proteins, the analogous residue is fixed for Cys, and conversion of human RHD proteins from Cys to Ser at this site has been shown to increase DNA-binding ability and increase resistance to inhibition by thiol-reactive compounds. However, the naturally-occurring Nematostella variant with Cys at position 67 binds DNA with a higher affinity than the Ser variant. On the other hand, the Ser variant activates transcription in reporter gene assays more effectively, and it is more resistant to inhibition by a thiol-reactive compound. Reciprocal Cys<->Ser mutations at residue 67 of the native Nv-NF-κB proteins affect DNA binding as in human NF-κB proteins, e.g., a Cys->Ser mutation increases DNA binding of the native Cys variant. CONCLUSIONS/SIGNIFICANCE. These results are the first demonstration of a naturally occurring and functionally significant polymorphism in NF-κB in any species. The functional differences between these alleles and their uneven distribution in the wild suggest that different genotypes could be favored in different environments, perhaps environments that vary in their levels of peroxides or thiol-reactive compounds.National Institutes of Health (CA047763); National Science Foundation (FP-91656101-0); Environmental Protection Agency (F5E11155); Conservation International Marine Management Area Science Program; Boston University (SPRInG grant); Postdoctoral Scholar Program at the Woods Hole Oceanographic Institution; The Beacon Institute for Rivers and Estuaries; the J Seward Johnson Fund; Boston University (5 P42 ES07381

    Response of oxidative stress parameters and sunscreening compounds in Arctic amphipods during experimental exposure to maximal natural UVB radiation.

    Get PDF
    The paper investigates tolerance to UV-radiation (UVR) in 3 amphipod species from the Arctic Kongsfjord, Spitsbergen: the herbivore Gammarellus homari (0-5 m water depth), the strictly carnivore scavenger Anonyx nugax (2-5 m water depth) and the detritivore/carnivore species Onisimus edwardsi (2-5 m water depth). In previous radiation exposure experiments, both carnivore species displayed elevated mortality rates already at moderate UVR levels. Therefore the concentrations of sunscreening compounds (mycosporine-like amino acids, MAAs, and carotenoids) and two antioxidant enzymes (superoxide dismutase, catalase) were studied in the animals under control conditions and following moderate as well as high UVR exposure.In both carnivore amphipods elevated sensitivity to experimental UVR exposure went along with a degradation of the tissue carotenoid and MAAs and a decrease of the enzymatic antioxidant defence, which resulted in increased lipid peroxidation in exposed animals. In contrast, the herbivore G. homari seems well protected by high concentrations of MAAs absorbed from its algal diet, and no oxidative stress occurred under experimental UVR. The species-specific degree of UV tolerance correlates well with the animals&#8242; typical vertical distribution in the water column

    Telomere-independent ageing in the longest-lived non-colonial animal, Arctica islandica

    Get PDF
    The shortening of telomeres as a causative factor in ageing is a widely discussed hypothesis in ageing research. The study of telomere length and its regenerating enzyme telomerase in the longest-lived non-colonial animal on earth, Arctica islandica, should inform whether the maintenance of telomere length plays a role in reaching the extreme maximum lifespan (MLSP) of > 500 years in this species. Since longitudinal measurements on living animals cannot be achieved, a cross-sectional analysis of a short-lived (MLSP 40 years from the Baltic Sea) and a long-lived population (MLSP 226 years Northeast of Iceland) and in different tissues of young and old animals from the Irish Sea was performed. A high heterogeneity of telomere length was observed in investigated A. islandica over a wide age range (10–36 years for the Baltic Sea, 11–194 years for Irish Sea, 6–226 years for Iceland). Constant telomerase activity and telomere lengths were detected at any age and in different tissues; neither correlated with age or population habitat. Stable telomere maintenance might contribute to the long lifespan of A. islandica. Telomere dynamics are no explanation for the distinct MLSPs of the examined populations and thus the cause of it remains to be investigated

    Effects of the increase of temperature and CO2 concentration on polychaetae Nereis diversicolor: simulating extreme scenarios of climate change in marine sediments

    No full text
    In order to evaluate the effects of elevated temperature and pCO2 on the polychaete Nereis diversicolor from the Río San Pedro estuary in Spain, multifactorial stressor experiments were performed in various combinations: at two temperatures (ambient temperature and temperature estimated for the year 2100) and at three pHNBS levels (estimated level in cases of CO2 leakage, at the level used in the high and moderate CO2 treatment, and present-day ambient pH levels). Experimental temperature treatments were designed within the context of a high-emission CO2, “business as usual” scenario, with an approximate median increase in temperature of 3.7–4.8°C by the year 2100. In this study, it was investigated whether oxidative stress occurs in cellular responses to elevated temperatures and CO2 levels in N. diversicolor. It was measured the levels of oxidative stress biomarkers, of hemoglobin, and of the carbonate system. The effects of ocean acidification on these organisms are almost unknown. This study has shown that when subject to pH and temperature stress, the Nereidid polychaete N. diversicolor exhibits reduced survival rates. Also the biomarker (Lipid Peroxidation—LPO) was also found to be sensitive to the pH versus temperature relationship.1741610,8952,056Q1Q2SCI

    A kinetic approach to assess oxidative metabolism related features in the bivalve Mya arenaria

    Get PDF
    Electron paramagnetic resonance (EPR) uses the resonant microwave radiation absorption of paramagnetic substances to detect highly reactive and, therefore, short-lived oxygen and nitrogen centered radicals. Previously, steady state concentrations of nitric oxide, ascorbyl radical (A•) and the labile iron pool (LIP) were determined in digestive gland of freshly collected animals from the North Sea bivalve Mya arenaria. From these data by By the application of a simple kinetic analysis based on elemental reactions to these data allowed us to estimate the steady state concentrations of superoxide anion, the rate of A• disappearance and the content of unsaturated lipids. This analysis applied to a marine invertebrate opens the possibility of a mechanistic understanding of the complexity of free radical and LIP interactions in a metabolically slow, cold water organism under unstressed conditions. This data can be further used as a basis to assess the cellular response to stress in a simple system as the bivalve M. arenaria that can then be compared to cells of higher organisms
    corecore