1,844 research outputs found
Modelling Gaia CCD pixels with Silvaco 3D engineering software
Gaia will only achieve its unprecedented measurement accuracy requirements
with detailed calibration and correction for radiation damage. We present our
Silvaco 3D engineering software model of the Gaia CCD pixel and two of its
applications for Gaia: (1) physically interpreting supplementary buried channel
(SBC) capacity measurements (pocket-pumping and first pixel response) in terms
of e2v manufacturing doping alignment tolerances; and (2) deriving electron
densities within a charge packet as a function of the number of constituent
electrons and 3D position within the charge packet as input to microscopic
models being developed to simulate radiation damage.Comment: 4 pages, 3 figures, contributed poster, appearing in proceedings of
the ELSA conference: Gaia, at the frontiers of astrometry, 7-11 June 2010,
S\`evres, Pari
Control of polarization and mode mapping of small volume high Q micropillars
We show that the polarization of the emission of a single quantum dot embedded within a microcavity pillar of elliptical cross section can be completely controlled and even switched between two orthogonal linear polarizations by changing the coupling of the dot emission with the polarized photonic modes. We also measure the spatial profle of the emission of a series of pillars with
different ellipticities and show that the results can be well described by simple theoretical modeling
of the modes of an infinite length elliptical cylinder
Electrode level Monte Carlo model of radiation damage effects on astronomical CCDs
Current optical space telescopes rely upon silicon Charge Coupled Devices
(CCDs) to detect and image the incoming photons. The performance of a CCD
detector depends on its ability to transfer electrons through the silicon
efficiently, so that the signal from every pixel may be read out through a
single amplifier. This process of electron transfer is highly susceptible to
the effects of solar proton damage (or non-ionizing radiation damage). This is
because charged particles passing through the CCD displace silicon atoms,
introducing energy levels into the semi-conductor bandgap which act as
localized electron traps. The reduction in Charge Transfer Efficiency (CTE)
leads to signal loss and image smearing. The European Space Agency's
astrometric Gaia mission will make extensive use of CCDs to create the most
complete and accurate stereoscopic map to date of the Milky Way. In the context
of the Gaia mission CTE is referred to with the complementary quantity Charge
Transfer Inefficiency (CTI = 1-CTE). CTI is an extremely important issue that
threatens Gaia's performances. We present here a detailed Monte Carlo model
which has been developed to simulate the operation of a damaged CCD at the
pixel electrode level. This model implements a new approach to both the charge
density distribution within a pixel and the charge capture and release
probabilities, which allows the reproduction of CTI effects on a variety of
measurements for a large signal level range in particular for signals of the
order of a few electrons. A running version of the model as well as a brief
documentation and a few examples are readily available at
http://www.strw.leidenuniv.nl/~prodhomme/cemga.php as part of the CEMGA java
package (CTI Effects Models for Gaia).Comment: Accepted by MNRAS on 13 February 2011. 15 pages, 7 figures and 5
table
Dynamic buckling and fragmentation in brittle rods
We present experiments on the dynamic buckling and fragmentation of slender
rods axially impacted by a projectile. By combining the results of Saint-Venant
and elastic beam theory, we derive a preferred wavelength lambda for the
buckling instability, and experimentally verify the resulting scaling law for a
range of materials including teflon, dry pasta, glass, and steel. For brittle
materials, buckling leads to the fragmentation of the rod. Measured fragment
length distributions show two clear peaks near lambda/2 and lambda/4. The
non-monotonic nature of the distributions reflect the influence of the
deterministic buckling process on the more random fragmentation processes.Comment: 4 pages, 5 figures, submitted to Physical Review Letter
Micromagnetometry of two-dimensional ferromagnets
The study of atomically thin ferromagnetic crystals has led to the discovery
of unusual magnetic behaviour and provided insight into the magnetic properties
of bulk materials. However, the experimental techniques that have been used to
explore ferromagnetism in such materials cannot probe the magnetic field
directly. Here, we show that ballistic Hall micromagnetometry can be used to
measure the magnetization of individual two-dimensional ferromagnets. Our
devices are made by van der Waals assembly in such a way that the investigated
ferromagnetic crystal is placed on top of a multi-terminal Hall bar made from
encapsulated graphene. We use the micromagnetometry technique to study
atomically thin chromium tribromide (CrBr3). We find that the material remains
ferromagnetic down to monolayer thickness and exhibits strong out-of-plane
anisotropy. We also find that the magnetic response of CrBr3 varies little with
the number of layers and its temperature dependence cannot be described by the
simple Ising model of two-dimensional ferromagnetism.Comment: 19 pages, 12 figure
Intersublevel Polaron Dephasing in Self-Assembled Quantum Dots
Polaron dephasing processes are investigated in InAs/GaAs dots using
far-infrared transient four wave mixing (FWM) spectroscopy. We observe an
oscillatory behaviour in the FWM signal shortly (< 5 ps) after resonant
excitation of the lowest energy conduction band transition due to coherent
acoustic phonon generation. The subsequent single exponential decay yields long
intraband dephasing times of 90 ps. We find excellent agreement between our
measured and calculated FWM dynamics, and show that both real and virtual
acoustic phonon processes are necessary to explain the temperature dependence
of the polarization decay.Comment: 10 pages, 4 figures, submitted to Phys Rev Let
Libraries need standards
The article discusses the need for standards in the library and information science profession, such as the use of the Dewey Decimal System of classification or the Dublin Core metadata scheme which facilitate information organization and library orientation. The most fundamental area in which standards are used is in the description and identification of objects. The author argues that the increasingly high number of electronic and Web-based information resources necessitates a universal set of standards for such material
Atomic Model of Susy Hubbard Operators
We apply the recently proposed susy Hubbard operators to an atomic model. In
the limiting case of free spins, we derive exact results for the entropy which
are compared with a mean field + gaussian corrections description. We show how
these results can be extended to the case of charge fluctuations and calculate
exact results for the partition function, free energy and heat capacity of an
atomic model for some simple examples. Wavefunctions of possible states are
listed. We compare the accuracy of large N expansions of the susy spin
operators with those obtained using `Schwinger bosons' and `Abrikosov
pseudo-fermions'. For the atomic model, we compare results of slave boson,
slave fermion, and susy Hubbard operator approximations in the physically
interesting but uncontrolled limiting case of N->2. For a mixed representation
of spins we estimate the accuracy of large N expansions of the atomic model. In
the single box limit, we find that the lowest energy saddle-point solution
reduces to simply either slave bosons or slave fermions, while for higher boxes
this is not the case. The highest energy saddle-point solution has the
interesting feature that it admits a small region of a mixed representation,
which bears a superficial resemblance to that seen experimentally close to an
antiferromagnetic quantum critical point.Comment: 17 pages + 7 pages Appendices, 14 figures. Substantial revision
Photoluminescence spectroscopy of bandgap reduction in dilute InNAs alloys
Photoluminescence (PL) has been observed from dilute InNxAs1–x epilayers grown by molecular-beam epitaxy. The PL spectra unambiguously show band gap reduction with increasing N content. The variation of the PL spectra with temperature is indicative of carrier detrapping from localized to extended states as the temperature is increased. The redshift of the free exciton PL peak with increasing N content and temperature is reproduced by the band anticrossing model, implemented via a (5×5) k·p Hamiltonian
- …
