We present experiments on the dynamic buckling and fragmentation of slender
rods axially impacted by a projectile. By combining the results of Saint-Venant
and elastic beam theory, we derive a preferred wavelength lambda for the
buckling instability, and experimentally verify the resulting scaling law for a
range of materials including teflon, dry pasta, glass, and steel. For brittle
materials, buckling leads to the fragmentation of the rod. Measured fragment
length distributions show two clear peaks near lambda/2 and lambda/4. The
non-monotonic nature of the distributions reflect the influence of the
deterministic buckling process on the more random fragmentation processes.Comment: 4 pages, 5 figures, submitted to Physical Review Letter