441 research outputs found

    Determination of the s-wave Scattering Length of Chromium

    Full text link
    We have measured the deca-triplet s-wave scattering length of the bosonic chromium isotopes 52^{52}Cr and 50^{50}Cr. From the time constants for cross-dimensional thermalization in atomic samples we have determined the magnitudes a(52Cr)=(170±39)a0|a(^{52}Cr)|=(170 \pm 39)a_0 and a(50Cr)=(40±15)a0|a(^{50}Cr)|=(40 \pm 15)a_0, where a0=0.053nma_0=0.053nm. By measuring the rethermalization rate of 52^{52}Cr over a wide temperature range and comparing the temperature dependence with the effective-range theory and single-channel calculations, we have obtained strong evidence that the sign of a(52Cr)a(^{52}Cr) is positive. Rescaling our 52^{52}Cr model potential to 50^{50}Cr strongly suggests that a(50Cr)a(^{50}Cr) is positive, too.Comment: v3: corrected typo in y-axis scaling of Figs. 3 and

    Buffer gas cooling and trapping of atoms with small magnetic moments

    Full text link
    Buffer gas cooling was extended to trap atoms with small magnetic moment (mu). For mu greater than or equal to 3mu_B, 1e12 atoms were buffer gas cooled, trapped, and thermally isolated in ultra high vacuum with roughly unit efficiency. For mu < 3mu_B, the fraction of atoms remaining after full thermal isolation was limited by two processes: wind from the rapid removal of the buffer gas and desorbing helium films. In our current apparatus we trap atoms with mu greater than or equal to 1.1mu_B, and thermally isolate atoms with mu greater than or equal to 2mu_B. Extrapolation of our results combined with simulations of the loss processes indicate that it is possible to trap and evaporatively cool mu = 1mu_B atoms using buffer gas cooling.Comment: 17 pages, 4 figure

    On the stellar populations in NGC 185 and NGC 205, and the nuclear star cluster in NGC 205 from Hubble Space Telescope observations

    Full text link
    [Abridged] We present a first detailed analysis of resolved stellar populations in the dwarf galaxies NGC 185 and NGC 205 based on archival V- and I-band WFPC2 pointings. For NGC 185 we deduce that star formation was probably still active about 4 x 10^8 yr ago. Key abundance-related results are: (1) We identify ancient stars with [Fe/H] <~ -1.5 dex by a well-defined horizontal branch (HB). (2) We find a prominent RGB/ faint-AGB clump/ bump- like feature with the same mean V-band magnitude as the HB, within uncertainties; from a comparison with theory, ancient stars have [Fe/H] ~ -1.5 dex, with a higher abundance level for intermediate-age stars. (3) From colour information we infer that the median [Fe/H] > -1.11 +/- 0.08 dex for ancient stars. For NGC 205, we record (m-M)o = 24.76 +/- 0.1 mag, based on the RGB I-band tip magnitude method. We find that stars were probably still forming less than 3 x 10^8 yr ago, which is compatible with star formation triggered by an interaction with M31. Key abundance-related results are: (1) The RGB/ faint-AGB is significantly skewed to redder values than that of a control field in the outskirts of M31; it probably results from a relatively narrow metallicity and or age range for a significant fraction of the dwarf's stars. (2) For ancient stars we infer from colour information that the median [Fe/H] > -1.06+/-0.04 dex. We briefly compare the stellar populations of NGC 205, NGC 185 and NGC 147. Finally, we find an apparent blue excess in the outer region of the nuclear star cluster in NGC 205. It is as compact as a typical galactic globular cluster, but is quite bright (10^6 L_solar,R); and by matching its blue colour with models, its stellar population is young, up to a few times 10^8 yr old.Comment: To appear in the May edition of the Astronomical Journal. Some figures have been degraded in quality for the purpose of submissio

    Abundance Gradients and the Formation of the Milky Way

    Get PDF
    In this paper we adopt a chemical evolution model, which is an improved version of the Chiappini, Matteucci and Gratton (1997) model, assuming two main accretion episodes for the formation of the Galaxy. The present model takes into account in more detail than previously the halo density distribution and explores the effects of a threshold density in the star formation process, during both the halo and disk phases. In the comparison between model predictions and available data, we have focused our attention on abundance gradients as well as gas, stellar and star formation rate distributions along the disk. We suggest that the mechanism for the formation of the halo leaves detectable imprints on the chemical properties of the outer regions of the disk, whereas the evolution of the halo and the inner disk are almost completely disentangled. This is due to the fact that the halo and disk densities are comparable at large Galactocentric distances and therefore the gas lost from the halo can substantially contribute to building up the outer disk. We also show that the existence of a threshold density for the star formation rate, both in the halo and disk phase, is necessary to reproduce the majority of observational data in the solar vicinity and in the whole disk. Moreover, we predict that the abundance gradients along the Galactic disk must have increased with time and that the average [alpha/Fe] ratio in stars (halo plus disk) slightly decrease going from 4 to 10 Kpcs from the Galactic center. We also show that the same ratios increase substantially towards the outermost disk regions and the expected scatter in the stellar ages decreases, because the outermost regions are dominated by halo stars.Comment: 41 pages (including the figures), To be published in Ap

    BCS pairing in a trapped dipolar Fermi gase

    Full text link
    We present a detailed study of the BCS pairing transition in a trapped polarized dipolar Fermi gas. In the case of a shallow nearly spherical trap, we find the decrease of the transition temperature as a function of the trap aspect ratio and predict the existence of the optimal trap geometry. The latter corresponds to the highest critical temperature of the BCS transition for a given number of particles. We also derive the phase diagram for an ultracold trapped dipolar Fermi gases in the situation, where the trap frequencies can be of the order of the critical temperature of the BCS transition in the homogeneous case, and find the critical value of the dipole-dipole interaction energy, below which the BCS transition ceases to exist. The critical dipole strength is obtained as a function of the trap aspect ratio. Alternatively, for a given dipole strength there is a critical value of the trap anisotropy for the BCS state to appear. The order parameter calculated at criticality, exhibits nover non-monotonic behavior resulted from the combined effect of the confining potential and anisotropic character of the interparticle dipole-dipole interation.Comment: 14 pages, 3 figure

    Massive stars and the energy balance of the interstellar medium. II. The 35 solar mass star and a solution to the "missing wind problem"

    Full text link
    We continue our numerical analysis of the morphological and energetic influence of massive stars on their ambient interstellar medium for a 35 solar mass star that evolves from the main sequence through red supergiant and Wolf-Rayet phases, until it ultimately explodes as a supernova. We find that structure formation in the circumstellar gas during the early main-sequence evolution occurs as in the 60 solar mass case but is much less pronounced because of the lower mechanical wind luminosity of the star. Since on the other hand the shell-like structure of the HII region is largely preserved, effects that rely on this symmetry become more important. At the end of the stellar lifetime 1% of the energy released as Lyman continuum radiation and stellar wind has been transferred to the circumstellar gas. From this fraction 10% is kinetic energy of bulk motion, 36% is thermal energy, and the remaining 54% is ionization energy of hydrogen. The sweeping up of the slow red supergiant wind by the fast Wolf-Rayet wind produces remarkable morphological structures and emission signatures, which are compared with existing observations of the Wolf-Rayet bubble S308. Our model reproduces the correct order of magnitude of observed X-ray luminosity, the temperature of the emitting plasma as well as the limb brightening of the intensity profile. This is remarkable, because current analytical and numerical models of Wolf-Rayet bubbles fail to consistently explain these features. A key result is that almost the entire X-ray emission in this stage comes from the shell of red supergiant wind swept up by the shocked Wolf-Rayet wind rather than from the shocked Wolf-Rayet wind itself as hitherto assumed and modeled. This offers a possible solution to what is called the ``missing wind problem'' of Wolf-Rayet bubbles.Comment: 52 pages, 20 figures, 2 tables, accepted for publication in the Astrophysical Journa

    Optimized loading of an optical dipole trap for the production of Chromium BECs

    Full text link
    We report on a strategy to maximize the number of chromium atoms transferred from a magneto-optical trap into an optical trap through accumulation in metastable states via strong optical pumping. We analyse how the number of atoms in a chromium Bose Einstein condensate can be raised by a proper handling of the metastable state populations. Four laser diodes have been implemented to address the four levels that are populated during the MOT phase. The individual importance of each state is specified. To stabilize two of our laser diode, we have developed a simple ultrastable passive reference cavity whose long term stability is better than 1 MHz

    The Dynamical and Chemical Evolution of Dwarf Spheroidal Galaxies

    Get PDF
    We present a large sample of fully self-consistent hydrodynamical Nbody/Tree-SPH simulations of isolated dwarf spheroidal galaxies (dSphs). It has enabled us to identify the key physical parameters and mechanisms at the origin of the observed variety in the Local Group dSph properties. The initial total mass (gas + dark matter) of these galaxies is the main driver of their evolution. Star formation (SF) occurs in series of short bursts. In massive systems, the very short intervals between the SF peaks mimic a continuous star formation rate, while less massive systems exhibit well separated SF bursts, as identified observationally. The delay between the SF events is controlled by the gas cooling time dependence on galaxy mass. The observed global scaling relations, luminosity-mass and luminosity-metallicity, are reproduced with low scatter. We take advantage of the unprecedentedly large sample size and data homogeneity of the ESO Large Programme DART, and add to it a few independent studies, to constrain the star formation history of five Milky Way dSphs, Sextans, LeoII, Carina, Sculptor and Fornax. For the first time, [Mg/Fe] vs [Fe/H] diagrams derived from high-resolution spectroscopy of hundreds of individual stars are confronted with model predictions. We find that the diversity in dSph properties may well result from intrinsic evolution. We note, however, that the presence of gas in the final state of our simulations, of the order of what is observed in dwarf irregulars, calls for removal by external processes.Comment: 21 Pages, 19 figures ; Accepted for publication in A&A. Higher resolution version may be downloaded here : http://obswww.unige.ch/~revaz/publications/aa2009_1173

    On the role of the magnetic dipolar interaction in cold and ultracold collisions: Numerical and analytical results for NH(3Σ^3\Sigma^-) + NH(3Σ^3\Sigma^-)

    Full text link
    We present a detailed analysis of the role of the magnetic dipole-dipole interaction in cold and ultracold collisions. We focus on collisions between magnetically trapped NH molecules, but the theory is general for any two paramagnetic species for which the electronic spin and its space-fixed projection are (approximately) good quantum numbers. It is shown that dipolar spin relaxation is directly associated with magnetic-dipole induced avoided crossings that occur between different adiabatic potential curves. For a given collision energy and magnetic field strength, the cross-section contributions from different scattering channels depend strongly on whether or not the corresponding avoided crossings are energetically accessible. We find that the crossings become lower in energy as the magnetic field decreases, so that higher partial-wave scattering becomes increasingly important \textit{below} a certain magnetic field strength. In addition, we derive analytical cross-section expressions for dipolar spin relaxation based on the Born approximation and distorted-wave Born approximation. The validity regions of these analytical expressions are determined by comparison with the NH + NH cross sections obtained from full coupled-channel calculations. We find that the Born approximation is accurate over a wide range of energies and field strengths, but breaks down at high energies and high magnetic fields. The analytical distorted-wave Born approximation gives more accurate results in the case of s-wave scattering, but shows some significant discrepancies for the higher partial-wave channels. We thus conclude that the Born approximation gives generally more meaningful results than the distorted-wave Born approximation at the collision energies and fields considered in this work.Comment: Accepted by Eur. Phys. J. D for publication in Special Issue on Cold Quantum Matter - Achievements and Prospects (2011

    Fitting the integrated Spectral Energy Distributions of Galaxies

    Full text link
    Fitting the spectral energy distributions (SEDs) of galaxies is an almost universally used technique that has matured significantly in the last decade. Model predictions and fitting procedures have improved significantly over this time, attempting to keep up with the vastly increased volume and quality of available data. We review here the field of SED fitting, describing the modelling of ultraviolet to infrared galaxy SEDs, the creation of multiwavelength data sets, and the methods used to fit model SEDs to observed galaxy data sets. We touch upon the achievements and challenges in the major ingredients of SED fitting, with a special emphasis on describing the interplay between the quality of the available data, the quality of the available models, and the best fitting technique to use in order to obtain a realistic measurement as well as realistic uncertainties. We conclude that SED fitting can be used effectively to derive a range of physical properties of galaxies, such as redshift, stellar masses, star formation rates, dust masses, and metallicities, with care taken not to over-interpret the available data. Yet there still exist many issues such as estimating the age of the oldest stars in a galaxy, finer details ofdust properties and dust-star geometry, and the influences of poorly understood, luminous stellar types and phases. The challenge for the coming years will be to improve both the models and the observational data sets to resolve these uncertainties. The present review will be made available on an interactive, moderated web page (sedfitting.org), where the community can access and change the text. The intention is to expand the text and keep it up to date over the coming years.Comment: 54 pages, 26 figures, Accepted for publication in Astrophysics & Space Scienc
    corecore