1,756 research outputs found

    Analytical investigations of laminar separations using the ''Crocco-Lees mixing parameter'' method

    Get PDF
    Analytical studies of laminar separations using Crocco-Lees mixing parameter metho

    351* Employment status of cystic fibrosis adults–a10year improving picture

    Get PDF

    Prenatal and perinatal risk factors for disability in a rural Nepali birth cohort

    Get PDF
    Background: Improving newborn health remains a global health priority. Little however is known about the neurodevelopmental consequences for survivors of complications in pregnancy, labour and the neonatal period in in low-income countries outside of small selective and typically urban facility studies. We ask which antenatal, birth and neonatal factors are associated with disability in childhood in a large community birth cohort from rural Nepal. Methods: 6436 infants were recruited during a cluster randomised control trial (RCT) of participatory women's groups (ISRCTN31137309), of whom 6075 survived beyond 28 days. At mean age of 11∙5 years (range 9.5–13.1), 4219 children (27% lost to follow-up) were available for disability screening which was conducted by face-to-face interview using the Module on Child Functioning and Disability produced by the Washington Group/UNICEF. Hypothesised risk factors for disability underwent multivariable regression modelling. Findings: Overall prevalence of disability was 7.4%. Maternal underweight (OR 1.44 (95% CI 1.01–2.08)), maternal cohabitation under 16 years of age (OR 1.50 (1.13–2.00)), standardised infant weight at 1 month (OR 0.82 (0.71–0.95)) and reported infant diarrhoea and vomiting in the first month (OR 2.48 (1.58–3.89)) were significantly associated with disability adjusted for trial allocation. The majority of hypothesised risk factors, including prematurity, were not significant. Interpretation: Proxies for early marriage and low birth weight and a measure of maternal undernutrition were associated with increased odds of disability. The lack of association of most other recognised risk factors for adverse outcome and disability may be due to survival bias

    Soot and Spectral Radiation Modeling for High-Pressure Turbulent Spray Flames

    Get PDF
    A transported probability density function (PDF) method and a photon Monte Carlo/line-by-line (PMC/LBL) spectral model are exercised to generate physical insight into soot processes and spectral radiation characteristics in transient high-pressure turbulent n-dodecane spray flames, under conditions that are relevant for compression-ignition piston engines. PDF model results are compared with experimental measurements and with results from a locally well-stirred reactor (WSR) model that neglects unresolved turbulent fluctuations in composition and temperature. Computed total soot mass and soot spatial distributions are highly sensitive to the modeling of unresolved turbulent fluctuations. To achieve reasonable agreement between model and experiment and to capture the highly intermittent nature of soot in the turbulent flame, it is necessary to accurately represent mixing and the low diffusivity of soot particles. This is accomplished in the PDF framework using a mixing model that enforces locality in the gas-phase composition space, while not mixing the transported soot variables. The results suggest that mixing is at least as important as kinetics in controlling soot formation and evolution in high-pressure turbulent flames. Regarding radiation, radiant fractions and global influences of radiation in these flames are relatively small. Nevertheless, an examination of spectral radiative heat transfer provides valuable insight into the nature and modeling of radiation in high-pressure turbulent combustion systems. There are complex spectral interactions that are revealed using PMC/LBL. CO2 dominates the total radiative emission and reabsorption, but most of the emitted CO2 radiation is reabsorbed before reaching the walls. On the other hand, most of the emitted soot radiation reaches the walls, but soot radiation is a small contribution overall; H2O dominates the radiation that reaches the walls. Global turbulence–radiation interactions (TRI) effects are small, but radiative emission from soot increases by approximately a factor two when TRI are considered. Radiative transfer contributes both to energy redistribution in the vessel and to wall heat losses. The results suggest that a simple model that considers soot radiation and the principal CO2 and H2O spectral bands might be sufficient to capture the key influences of radiation in engine CFD. It is expected that these findings will contribute to the development of truly predictive CFD models for engines and other high-pressure turbulent combustion systems

    Genome-wide association study of receptive language ability of 12 year olds

    Get PDF
    Purpose: We have previously shown that individual differences in measures of receptive language ability at age 12 are highly heritable. The current study attempted to identify some of the genes responsible for the heritability of receptive language ability using a genome-wide association (GWA) approach. Method: We administered four internet-based measures of receptive language (vocabulary, semantics, syntax, and pragmatics) to a sample of 2329 12-year-olds for whom DNA and genome-wide genotyping were available. Nearly 700,000 single-nucleotide polymorphisms (SNPs) and one million imputed SNPs were included in a GWA analysis of receptive language composite scores. Results: No SNP associations met the demanding criterion of genome-wide significance that corrects for multiple testing across the genome (p < 5 ×10-8). The strongest SNP association did not replicate in an additional sample of 2639 12-year-olds. Conclusion: These results indicate that individual differences in receptive language ability in the general population do not reflect common genetic variants that account for >3% of the phenotypic variance. The search for genetic variants associated with language skill will require larger samples and additional methods to identify and functionally characterize the full spectrum of risk variants

    Sound Synthesis with Auditory Distortion Products

    Get PDF
    This article describes methods of sound synthesis based on auditory distortion products, often called combination tones. In 1856, Helmholtz was the first to identify sum and difference tones as products of auditory distortion. Today this phenomenon is well studied in the context of otoacoustic emissions, and the “distortion” is understood as a product of what is termed the cochlear amplifier. These tones have had a rich history in the music of improvisers and drone artists. Until now, the use of distortion tones in technological music has largely been rudimentary and dependent on very high amplitudes in order for the distortion products to be heard by audiences. Discussed here are synthesis methods to render these tones more easily audible and lend them the dynamic properties of traditional acoustic sound, thus making auditory distortion a practical domain for sound synthesis. An adaptation of single-sideband synthesis is particularly effective for capturing the dynamic properties of audio inputs in real time. Also presented is an analytic solution for matching up to four harmonics of a target spectrum. Most interestingly, the spatial imagery produced by these techniques is very distinctive, and over loudspeakers the normal assumptions of spatial hearing do not apply. Audio examples are provided that illustrate the discussion

    'The Brick' is not a brick : A comprehensive study of the structure and dynamics of the Central Molecular Zone cloud G0.253+0.016

    Get PDF
    © 2019 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society.In this paper we provide a comprehensive description of the internal dynamics of G0.253+0.016 (a.k.a. 'the Brick'); one of the most massive and dense molecular clouds in the Galaxy to lack signatures of widespread star formation. As a potential host to a future generation of high-mass stars, understanding largely quiescent molecular clouds like G0.253+0.016 is of critical importance. In this paper, we reanalyse Atacama Large Millimeter Array cycle 0 HNCO J=4(0,4)3(0,3)J=4(0,4)-3(0,3) data at 3 mm, using two new pieces of software which we make available to the community. First, scousepy, a Python implementation of the spectral line fitting algorithm scouse. Secondly, acorns (Agglomerative Clustering for ORganising Nested Structures), a hierarchical n-dimensional clustering algorithm designed for use with discrete spectroscopic data. Together, these tools provide an unbiased measurement of the line of sight velocity dispersion in this cloud, σvlos,1D=4.4±2.1\sigma_{v_{los}, {\rm 1D}}=4.4\pm2.1 kms1^{-1}, which is somewhat larger than predicted by velocity dispersion-size relations for the Central Molecular Zone (CMZ). The dispersion of centroid velocities in the plane of the sky are comparable, yielding σvlos,1D/σvpos,1D1.2±0.3\sigma_{v_{los}, {\rm 1D}}/\sigma_{v_{pos}, {\rm 1D}}\sim1.2\pm0.3. This isotropy may indicate that the line-of-sight extent of the cloud is approximately equivalent to that in the plane of the sky. Combining our kinematic decomposition with radiative transfer modelling we conclude that G0.253+0.016 is not a single, coherent, and centrally-condensed molecular cloud; 'the Brick' is not a \emph{brick}. Instead, G0.253+0.016 is a dynamically complex and hierarchically-structured molecular cloud whose morphology is consistent with the influence of the orbital dynamics and shear in the CMZ.Peer reviewedFinal Accepted Versio

    Hyperglycemia and Death in Cystic Fibrosis–Related Diabetes

    Get PDF
    OBJECTIVE Diabetes is common in cystic fibrosis and increases the risk of death, yet the role of hyperglycemia remains unproven. An association between glycemia and mortality would provide compelling evidence to support glucose lowering in cystic fibrosis–related diabetes (CFRD). RESEARCH DESIGN AND METHODS Using the U.K. Cystic Fibrosis Registry, we analyzed longitudinal data from 2006 to 2009 in 520 individuals with diabetes. We tested the association between HbA1c and mortality. RESULTS During a median follow-up of 2 years, 36 patients died. The median value of HbA1c was higher in those who died (7.3%) than in those who did not (6.7%). An HbA1c value of ≥6.5% was associated with a threefold increased risk of death (hazard ratio 3.2 [95% CI 1.4–7.3]; P = 0.005) independent of potential confounders. CONCLUSIONS Hyperglycemia trebles the risk of death in patients with CFRD. These findings provide epidemiologic support for continued efforts to improve glycemic control. Diabetes frequently complicates cystic fibrosis. Cystic fibrosis–related diabetes (CFRD) has an incidence in teenagers of up to 6% per year and a prevalence in adults of >30% (1,2). Diabetes further elevates the already high mortality rates in cystic fibrosis (3–5). In individuals without cystic fibrosis, diabetes increases the risk of death, and in individuals with diabetes, hyperglycemia increases the risk of death (6,7). However, no study of CFRD using national data has investigated whether hyperglycemia, per se, increases the risk of death; likewise, no trial has tested whether controlling blood glucose prolongs survival. Proving an association between glycemia and mortality in cystic fibrosis would provide compelling observational evidence to inform clinical practice. Using the U.K. Cystic Fibrosis Registry, we performed longitudinal analyses to test the association between glycemia, as measured by HbA1c, and mortality in individuals with CFRD

    Systemic lobar shunting induces advanced pulmonary vasculopathy

    Get PDF
    AbstractObjectives: We characterized the morphology and vasomotor responses of a localized, high-flow model of pulmonary hypertension. Methods: An end-to-side anastomosis was created between the left lower lobe pulmonary artery and the aorta in 23 piglets. Control animals had a thoracotomy alone or did not have an operation. Eight weeks later, hemodynamic measurements were made. Then shunted and/or nonshunted lobes were removed for determination of vascular resistance and compliance by occlusion techniques under conditions of normoxia, hypoxia (FIO2 = 0.03), and inspired nitric oxide administration. Quantitative histologic studies of vessel morphology were performed. Results: Eighty-three percent of animals having a shunt survived to final study. Aortic pressure, main pulmonary artery and wedge pressures, cardiac output, blood gases, and weight gain were not different between control pigs and those receiving a shunt. Six of 9 shunted lobes demonstrated systemic levels of pulmonary hypertension in vivo. Arterial resistance was higher (24.3 ± 12.0 vs 1.3 ± 0.2 mm Hg · mL–1 · s–1, P =.04) and arterial compliance was lower (0.05 ± 0.01 vs 0.16 ± 0.03 mL/mm Hg, P =.02) in shunted compared with nonshunted lobes. Hypoxic vasoconstriction was blunted in shunted lobes compared with nonshunted lobes (31% ± 13% vs 452% ± 107% change in arterial resistance, during hypoxia, P <.001). Vasodilation to inspired nitric oxide was evident only in shunted lobes (34% ± 6% vs 1.8% ± 8.2% change in arterial resistance during administration of inspired nitric oxide, P =.008). Neointimal and medial proliferation was found in shunted lobes with approximately a 10-fold increase in wall/luminal area ratio. Conclusions: An aorta–lobar pulmonary artery shunt produces striking vasculopathy. The development of severe pulmonary hypertension within a short time frame, low mortality, and localized nature of the vasculopathy make this model highly attractive for investigation of mechanisms that underlie pulmonary hypertension. (J Thorac Cardiovasc Surg 2000; 120:88-98

    Penn State University NSF GK-12 Project: Using Web-Based Education and Interaction with K-12 and College Freshman to Promote Science and Engineering

    Get PDF
    Penn State University has hosted an NSF-sponsored GK-12 Outreach project for the past five years, and has just begun the second phase of the project. The Penn State project utilizes the talents of many science and engineering graduate students as teachers, mentors and role models for the K-12 classrooms. The project focuses on developing skills of students in the areas of science, technology, engineering and mathematics through the use of Advanced Transportation Technologies. A new project component was devised and implemented-the interaction of K-12 students with college freshman via a website project. The college freshmen were asked to create a website describing a component of Clean Energy , which was to include an assessment tool to provide feedback on their website. When possible, the college freshmen were encouraged to use active learning and inquiry-based learning concepts. This was encouraged so that the college freshman had an opportunity to practice developing scientific inquiry as a skill through a presentation, and provided the K-12 classroom students a unique opportunity to learn through inquiry. The K-12 students were invited to participate in the research by reviewing and critiquing these websites through feedback via the website to the college freshman. The feedback could take many forms, including specific comments and critique along with a creative assessment tool that the college freshman decided to present with their subject materials. This paper will review the educational outcomes garnered by the students, and provide feedback and analysis from the K-12 and college freshman participants
    corecore