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ABSTRACT

The design of advanced high-speed aircraft has prompted considerable
interest in supersonic and hypersonic boundary layer separation problems.
A review of the current analytical methods and available experimental
data has been made for the two-dimensional flat plate-deflected flap
configuration., The semi-empirical approach initially proposed by
Crocco and Lees and as subsequently modified was used in the study.
Improvements in the understanding of the mixing function correlation
through the initial separation point and up to the plate-flap intersection
have been presented. The necessity for coupling together the complete
separated region from initial separation to final reattachment has

been indicated.
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I. INTRODUCTION AND DESCRIPTION OF PROBLEM

The project objective is to explore in detail the laminar separated flow
phenomenon, with emphasis on the separation region ahead of reattachment.
This study program consists of analytical calculations supplemented by corre-
lation with the available experimental data.

While the work contained in this report is principally concerned with the
flow prior to reattachment, reattachment solutions have been studied with the
aim of tying the entire interaction problem together. The reattachment and
coupling techniques are discussed.

I-1. Justification of Interest

Current interest in "gliding type" re-entry bodies and recoverable booster
stage rockets poses many design problems for the engineer and space scientist.
Among the problems to be dealt with are control requirements and the prediction
of pressures on the body surface. When the airflow separates from a surface,
sudden and large changes frequently result in the aerodynamic pressure distri-
butions. In the design of future hypersonic vehicles, separated flows and their
effects on control characteristics must be well understood.

In the event that aerodynamic control surfaces are used, studies of the
type presented will be helpful in assessing the size and responsiveness of these
surfaces. Additionally, the analysis could be useful in determining the pressure
distribution in the vicinity of two-dimensional compression corners which are
structurally a part of the vehicle surface.

A re-entry vehicle enters the low density high altitude atmosphere at very
high velocities. By a controlled descent, much of the orbital velocity can be
dissipated prior to reaching the denser atmosphere where aerodynamic heating
can be a significant problem. Flight such as this at supersonic and hypersonic
speeds in low density air would be expected to promote the occurrence of laminar
flow over much of the vehicle during the descent. High Mach numbers have a
suppressing influence on the transition to turbulence, hence, laminar flow is
more likely to occur at high Mach numbers.

I-2. Description of Physical Phenomena

Flow separation may be initiated by two broad classes of conditions. The
first class, the one to be discussed, occurs when the flow advances against an
adverse pressure gradient. This class is usually termed 'boundary layer separation’
as opposed to the "breakaway separation,' the second class. Breakaway separations
occur even though a favorable pressure gradient exists and are usually associated
with flows past bluff bodies and sharp convex corners.

The principles underlying the two~dimensional boundary layer separation are
now generally accepted. The boundary layer developed by a viscous f}u%d flowing
over a body encounters skin friction effects at the wall and may additionally




encounter an upstream directed force. This latter force, in most fluid dynamic
situations, results from the adverse pressure gradient. When these forces are
such that the velocity gradient (3u/dy) at the wall becomes zero, the flow is
on the verge of separating.

The so~-called "free interaction” type of boundary layer separation is the
classification which is of interest in this study. By "free interaction" we
consider that the pressure distribution of the outer flow is the result of a
mutual interaction between the boundary layer and the outer flow. In a free
interaction the flow is independent of the direct influence of the downstream
configuration and is also independent of the mode of inducing the separation.

In a nonviscous flow field an impinging or generated shock wave will contact
some point on the surface which is downstream from the leading edge. However,
with viscous effects present, a developed boundary layer exists, and the shock
wave does not reach the surface. The adverse pressure gradient may be generated
by the shape of the body, as with a compression corner, or by an external source
such as an impinging shock wave. In both cases, the flow experiences a pressure
rise across the shock waves.

Figures 1 and 2 present the essential features of two types of free inter-
action separations. Both are for two-dimensional flows. The model in Figure 2
is the one principally used in this work, because most experimental studies
have selected it. It should be mentioned that the separation and reattachment
shocks coalesce into a single shock at a distance above the boundary layer.

The fluid near the body passes through two weaker shocks, while the flow well
out into the inviscid layer passes through only a single shock.

If the shock is of sufficient strength to cause separation, the external
stream is deflected at the separation point, and "circulating" fluid is trapped
below this streamline. This streamline, customarily referred to as the "dividing
streamline,” joins the body again at the reattachment point.

I-3. Design Applications

Considering the separation analysis from the perspective of the engineer
who in the end must apply the theories in hardware applications, the problem
becomes clouded with complications. The flow conditions ahead of the interaction
and the geometry are the only quantities which the engineer knows in advance.
The locations of separation and reattachment, and the distribution of pressures
throughout the interaction region are not known initially. This is one important
class of problems in which the static pressures are not given, but must be deter-
mined by the interaction between the "external" inviscid flow and the viscous
layer near the surface.

The Crocco-Lees method is capable of embracing the entire separated inter-
action within a single framework once the semi-empirical features have been
reasonably well accounted for. The problem can be analyzed by breaking the in-
teraction region into three distinct parts. These parts include: 1.) flat plate
Blasius type flow to separation, 2.) separation to plateau to shock impingement,
and 3.) shock to reattachment to Blasius flat plate flow. By utilizing the
empirical pressure plateau correlation and the downstream pressure ratio calculated

2




INCIDENT , /
SHOCK EXPANSIONN/////

REFLECTED
SHOCK

COMPRESSION

WAVES COMPRESSION

WAVES

SEPARATION REATTACHMENT

T
/////////////// 777777
LDIVIDING STREAMLINE

PRESSURE DISTRIBUTION IN
SEPARATION REGION

PRESSURE [————--—--———{--———====-
RATIO |

PRESSURE
PLATEAU

Figure 1. Shock Wave-Laminar Boundary Layer Interaction Model
Shock Generated by External Source



Reattachment

Shock
Compression
Waves

Reattachment
ividing Streamline

Separation Shock

7777777777 777777777777 7777

Separation

Reattachment Regijion
"Peak' Pressure
(High Mach Nos.) }_\_\
r__; _______ e ———= b —
Blasius- : /
Separation I ’
| / \_
Separation-Shock Impingement! Low Mach Nos.
>
|
|
Plateau Region _!
Pressure ;
Ratio |
I
|
I/—Inviscid Flpw
-
X
%o *s xplateau Xcorner Xr Blasius

Figure 2. Shock Wave-Laminar Boundary Layer Interaction
Shock Generated by Ramp




from inviscid theory, it is hoped to tie the three segments together. A straight
dividing streamline which connects the separation and reattachment points will

be assumed. To approximate the breakaway angle which this streamline makes with
the plate, the inviscid turning angle dictated by the empirical plateau pressure
will be used. By first '"guessing" a separation point, the reattachment point
becomes fixed. It should be mentioned that the physical conditions at reattach-
ment are not well known at present. The pressure ratio at the reattachment point
is not known, however, in general it would be expected that it would be lower
than the final downstream value. By working the solution through to the shock,
and then matching pressure ratios across the shock, it will be determined if
sufficient mixing has occured in the plateau region to accomplish reattachment

at the known higher pressure downstream.

If the length of the mixing region (pressure plateau) is too short to
accomplish the inviscid reattachment pressure rise, a new separation location
further forward on the plate will be selected. Iteration will produce the optimum
location for the separation point, and hence, will give the pressure distribution
throughout the entire interaction. This technique is of no value in explaining
unknowns in the reattachment phenomenon, but, it does provide a mechanism for
linking the regions together.

I-4., Why the Crocco-Lees Method Was Selected

In considering the foundation upon which to base the separation development,
the design engineer was kept uppermost in mind. Simplicity of use, conceptual
understanding, and accuracy were the prime considerations given.

The Crocco-Lees method gives a qualitative interpretation of the velocity
profile characteristics by making use of the velocity profile parameter, K.
Different K's are associated with different velocity profiles. This gives a
conceptual feeling for the changes which occur without becoming involved in the
mathematics which describe the actual profile shape. This method is consistent
with the concept that the velocity profile is dependent upon its previous "history.'
This is born out by the fact that K at separation differs from K at reattachment--
as would be expected because of the different "histories'" is each case.

The principal shortcoming of the method is that the semi-empirical para-
meters which appear in the development must be determined on the basis of experi-
mental results. A corresponding disadvantage of purely analytical solutions is
that they require the selection of velocity profiles to describe the flow. This
becomes a very involved process because non-similar profiles are needed to de-
scribe the physical behavior throughout the pressure plateau region. Another
consideration is that a semi-empirical technique should lend itself to extensions,
paricularly in the case of the turbulent boundary layer.




II. ANALYTICAL INVESTIGATION

II-1. Background of Previous Investigations

Considerable material has been presented in the open literature pertaining
to the laminar separation problem. The discussions in this section and Appendix A
will be brief--referral to the references will be needed to complete many of the
details.

The major portion of this section will be devoted to a discussion of the
Crocco-Lees method and the modifications which resulted principally from Glick's
work. The Lees and Reeves method will be discussed briefly because of its cur-
rent popularity. Four other popular techniques are described in Appendix A.

II-1-1. Crocco-Lees Method. The original Crocco-Lees paper which appeared
in 1952 (1)* dealt with flows up to the point of separation for compression corners
and for the aft flow over a supersonic airfoil with a blunt training-edge. The
original concepts which apply up to the point of separation have remained basically
unchanged except for the behavior of the empirical parameter C(K). Glick (2) has
extended the technique to include the separated region and cleared up some trouble-
some details near separation--such as the correct behavior of C(K).

This method, like nearly all analytic solutions which have been proposed in
the literature, makes use of the integral momentum technique as a means of simp-
lifying and handling the boundary layer equations. The boundary layer profiles
are absorbed in the definition of a new velocity profile parameter.

The Crocco-Lees method is based upon the assumption that the parameters
describing the boundary layer are dependent upon the rate of entrainment of fluid
into the boundary layer from the external stream and that there exist certain
universal correlation functions which relate these parameters. The analytical
development for the method hinges on the velocity profile shape parameter, K,
which is defined as the ratio of the momentum flux to the product of mass flux
and local external velocity. It is expressed as

K = I _ homentum flux
- mass flux x u (1)
mu e
e
where 5
L= j puzdy
o
- 8
m = f pu dy
o

*Numbers in brackets refer to references at the end of this report.
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This basic parameter, which characterizes the flow in the viscous region, can be
shown (1,2) to be defined in terms of either compressible or incompressible
boundary layer variables as

§ - &% - §x%
K=& ~ 5, - 8.% )
L

The Stewartson (3) transformation, which assumes a Prandtl number of unity and
viscosity proportional to the absolute temperature, is utilized to transform a
compressible boundary layer.

By dividing the momentum flux by the mass flux, a mean velocity (u,) for
the viscous region is obtained. Also, without attaching any significance to
the definition, one can think of a mean-temperature (T,) across the viscous
region., Crocco-Lees develops a parameter, called f, which describes the mean
temperature-mean velocity relationship. This parameter is found in terms of
the boundary layer variables to be

(a_ -6k - 8Hx)8 KSG.
1 1 1 / 1 1

In a sense, the deviations of f and K from unity measure the nonuniformity
of the velocity profile. For every incompressible boundary layer flow, f and
K can be related to each other. Compressible boundary layers may be expressed
in an equivalent incompressible form. Once transformed, each point in the flow
region corresponds to a point in the f-K plane, and the whole class of flows
(attached, separating, separated, etc.) is represented by a single locus of
points in the f-K plane.

For purposes of analysis, the flow is divided into two parts--an outer
region which is assumed to be essentially nondissipative, and an inner region
in which the viscosity is assumed to play an important role. Figure 3 expresses
the separated region in terms of Crocco-Lees' language. The extent of the vis-
cous region is measured by the length, §, which for the case of a body in high-
Reynolds-number stream is the usual boundary layer thickness. The definition
of the length 8 is artificial, and physical quantities such as pressure and
interaction distance are not sensitive to the definition of §. To develop and
handle the equations describing the flow, the chief assumptions are:

1. Gradients of viscous stresses are negligible compared with the static
pressure gradient in the flow direction

2. Zero pressure gradient normal to surface

3. Steady flow

4, The external flow over the adiabatic wall is supersonic and isentropic.

The flow direction at y=6 is given by the Prandtl-Meyer relation.

Prandtl number of one

Viscosity proportional to the absolute temperature

Flow angles relative to the wall are small

Gas is thermally and calorically perfect

Constant stagnation temperature throughout the whole region

Laminar viscous region

O W oo~
.
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The flow within the viscous region is described by the momentum and con-
tinuity equations which can be obtained in the following forms (2):

Pw c
d dm e f dp.
—_ = - -8
. (mKwe) v, (;dx:> Zs, (o (4)
dm _ P N/ dd
dx_<§e>(dx 6> (5
X1 =
1 -2 Ve

u . . .
where 3, = » W, = e/at, and 6is the direction of the stream-

Y W

e
line at the edge of the boundary layer. The external inviscid insentropic flow
is described by the Bernoulli equation

(55

P/

In addition, one has the mean temperature equation m = §, and the
Prandtl-Meyer relationship 6 = 6(w ). From this system of equations, p and §

are eliminated, leaving three equagions and six unknowns (&, m, X, w , ¢, and 8,).

To account for the three remaining unknowns and thus complete the mathematical
formulation of the method, semi-empirical coefficients are introduced. These
account for the mean temperature, the skin friction, and the mixing in the vis-
cous region. These additional parameters, all dependent on K, are defined as
F(K), D(K), and C(K). F(K) is related to the mean temperature-mean velocity
correlation, D(K) is the skin friction correlation function, and C(K) is the
mixing rate correlation function. These are expressed as follows:

F

F(K)

c D(K) b2

f t/m

W a
k = (d6/dx - §) = C(K) —[‘Z—E i

F and f are related by
§.% - § %%
i i
Fel@ - l=5 5% - o @
i i i

The functional dependence of these empirical coefficients must be obtained
through correlation with experiments--in hope of predicting the ''universal”
behavior for each.

By using these definitions of C(K), F(K), and D(K) in the original three
equations, they may be solved simultaneously to obtain the following set of
non-linear first order differential equations:



(8)
r {_% [t - x(pee) - LRU=D epae) 12 2e) + 2e2(y-10) | + 0 }

dk _
dr = ¢
C {K(F_'_t)(l_.:ﬁ_;_l:Mezt).}.K(Y—l)Meztz-KF(F'f't'i'K'g'E)}
c dF ®
a2 -kELY - (- -ROE ek |+e)
ag

C
3y -1 2 2.2 dF
{K(F+t)(1- 5 Met)+(y-1)KMet -KF(F+t+K—dK)} .

These two general equations may be specialized to the various flow regions
by the proper selection of the parameters C(K), D(K), and F(K).

Blasius-Separation

In the region upstream of separation the boundary layer is attached. 1In
the original Crocco-Lees paper, the Falkner-Skan profiles were used to predict
C(K) and D(K) in this region and F(K) was determined by a maximation principle.
Glick established that the C(K) given by the Falkner-Skan solution was incorrect
and improved upon this by using experimental and analytical solutions for the
Schubauer ellipse. By using the following approximations,

 2(1K)
FK) = 2koD)
D(K) = 22.2 (K - .630)

C(K) 36.2 (K - .630)

equations (8) and (9) are then linearized with respect to Mach number to give

%% = -L [f - e ] (10)
£ ]

It is assumed that M= M +e, where e<< M and 6 is given by the linearized
Prandt1l-Meyer relati%nship

J/ M°° -1 ¢
8 =

y -1 2
M1+ Y= M%)

10




The ¢ term is likened to the Reynolds number because of its behavior. The quan-
tities L,N,P, and Q are all functions of K and are given by:

2K(1-K) (2Kk-1)2 M 2-T

L =
4MocK(1-K)(2K2—2K+1)(1+y—£—1' M ) C(K)S
where \, ™, (2K~-1)? (2K-1)3 (Mm-—l) 1
S = |1- - ,
. 2(2K2-2K+1)(1+y£—1 M 2) 4(2K2-2K+1)(1-K)(1+x£—1ﬁi)2 J
M IM_ (2K-1)
N =@ = 2K (1-K) ’
CK)M (2K+1) (1-¢) 24K (1-K)M * y+1 M Z
P= —2= [ o(1-K)+ { “;+1<( =] -1}
/2T 2K (2K-1) 2 (= M_2)
2K(1-K) (1+3{—£l sz):l
- K-1) )
CRIM_ 2(1-K)K(1+¥£—1' M 2) (1-0) (2K2-2K+1)
¢ = 00 T t—<ms— ]

o= D(X)/2(1-K) C(K) .

Separation to Shock Impingement

Beyond the separation point the flow is detached. It is assumed that the
skin friction at the wall is sufficiently reduced so that it can be neglected
in this region. As a first approximation, F(K) is taken as constant, equal
to the separation value. The mixing correlation function, C(K) is more elusive
and must follow a trajectory such that the correct pressure distribution results.
This behavior will be discussed in more detail in Section IIL. By taking

D(X) =0
F(K) = Fsep = FS

: CK) =C

| the generalized equations, when linearized become

-1
1 &k  -F /M 2T M (145 M 2 2
1 = S oo 1 [ oo( 2 [oe] ) (FB - (1—K)b)+ c :l , (12)
| g M_(H+Y5= M 2)Cb ME=T¢ Fg

11




de - =T CMm(1+y£—1M:)FS
T +X:l 2 [ te ]
dg  K(l+5~ M )Cb JH2T 4

, (13)

where

YF M 2 M 2-1)
b = F82+ = + —=
(1+Y;—1 M_2) (1+Y£—1 M 2) .

Mixing in this region is of paramount importance. After separation the
flow is essentially divided into two parts by the dividing streamline. The
fluid along the dividing streamline is accelerated by viscous momentum transfer
in the region between separation and the beginning of reattachment and is there-
by prepared for the forthcoming reattachment pressure rise when fluid along the
dividing streamline is stagnated.

For the entire region between the Blasius point and shock impingement,
transformation back to the real plane is made by using

s M 1 3y-1

- - +y—-- 27 -
s = X 1 (1+L1M2)2\J Ldg = [l+5 MeJZ(Yl)
Xg Re 2 w £ C(K) M, e v (14)
s 1'{% L)
where
Re = pmuaxs
X
s W

Reattachment

The reattachment solution differs in that the generalized equations (8) and (9)
are not adapted to this region. Instead, the momentum equation (4) is reduced to

dK = (1-K) (%) + KFCMM:) (15)
12




by neglecting the skin friction at the wall. The experiments by'Chapman, et. al.
(4), justify the belief that during reattachment the viscous effects are not im-
portant. By neglecting the mixing (C(K) = 0), one obtains

k=0 = (jﬁi) - 9

which can be written

dx = dd

By non-dimensionalizing and integrating,

5
% d/x
X 1 +j 6Sh - sh > (16)

results, The explicit integration of this equation determining x is carried
out by assuming that the F(K) relation joining the shock and the Blasius point
is linear. C(K) and D(K) have both been neglected as being negligibly small.

Matching of Conditions at Blasius Point

Since the method of solution requires the matching of conditions at the upstream
Blasius point, € and { must be known at this location. These values are obtained
by assuming that a weak hypersonic interaction exists and then solving to find
€5 and Cp These are given by the following two equations:

gb = (tJ .Z&ZIRex )/(1-1() (17)

M (1 +¥L M 2) c®)(1-K)?2 3
6y = = 2= (-d5g a5 )
JMa =1 J.44Rex

(18)

where
Re = pcoucoxb

X u’oo

13




A weak hypersonic interaction imposes the limitation that the leading edge must
be sharp. If the Reynolds number, based upon the leading edge radius, has a
value of less than one hundred, the interaction is generally assumed to be weak.

I1-1-2. lees and Reeves Method. The main attempt of the Lees and Reeves
(5) method was to develop a theory which is capable of including the entire
separated flow within a single framework, without introducing semi-empirical
features. To describe this flow approximately, including the subsequent re-
attachment, an integral or moment method is used in which the first moment of
the momentum is employed, in addition to the usual (zeroth moment) momentum
integral.

The velocity and enthalpy profiles are characterized by a single independent
parameter, a , not explicity related to the local static pressure gradient. The
successful application of this method to separated and reattaching flows hinges
on the proper choice of the one parameter family of velocity profiles utilized
to represent the integral properties of the viscous flow. The Stewartson (6)
reversed-flow profiles were found to have the quantitatively correct behavior
while polynomials did not. For flows with heat transfer, the Cohen-Reshotko (7)
profiles are used.

The Lees and Reeves method employs the same assumptions that were used by
Crocco-Lees. The desired form of the equations is obtained by first trans-
forming the compressible boundary layer equations into an equivalent incom-
pressible form by making use of the Stewartson (3) transformation.

Once in incompressible form, the momentum integral is obtained by inte-
grating the "equivalent" incompressible boundary layer momentum equation across
the boundary layer. 1In a similar manner, the first moment of momentum can be
obtained by multiplying the momentum equation by u, and integrating across the
boundary layer. These two equations in conjunctio% with the boundery layer con-
tinuity equation describe the viscous region.

The external inviscid flow is not a known quantity but must be determined
by the normal velocity induced by the growth of the boundary layer. The in-
clination of the streamline in the external inviscid flow at y = § is given
by the Prandtl-Meyer relationship. This relationship is then transformed to
equivalent incompressible flow by using the Stewartson transformations.

Because the compression waves generated by the growth of the boundary layer
coalesce into a shock wave well beyond the outer edge of the boundary layer, the
isentropic Prandtl-Meyer relationship between M and 8 is a good approximation
at the edge of the boundary layer. The lineariZed Prandtl-Meyer relation,

-/M*-1 ¢
6 = = , (19)
(1+5=M2) M
2 e o
where M = M +c, may be used when the supersonic-hypersonic similarity parameter

e -1 ~ tan 6 is small compared with unity, and tan 6 v 8.
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The linearized Prandtl-Meyer equation (19) together with the transformed
Prandtl-Meyer relationship describe the inviscid region. By simultaneously
solving the viscous and inviscid equations, and by making use of newly defined
functions, the following two equations, convenient for numerical integration
are obtained:

./
<6* )ﬂ =.N_1 (20)
t/M dasd * N
e t 3
and
6*",—‘E’> _.1:1_2. (.._l—ﬂ (21)
t \dét* “NB L(_cl}_l\_“
da/
N N 3 and dH/da are all functions dependent upon a , which in turn depends

on thg proflle family selected.

The dependent variables in (20) and (21) are ¢ (or M ) and 6: compared with
€ and ¢ in the Glick method. The mechanics for solution §n both techniques
are similar. The variables at the separation point must be repeatedly guessed
in hopes of arriving at the correct Blasius point values. Once the Blasius to
separation region has been solved, the solution downstream from separation
follows in a straightforward manner, just as in the Crocco-Lees method.

Methods discussed in References 8-13 are briefly described in Appendix A.
IT-2, Limitations of Analytical Methods

This section discusses the inherent limitations of the two methods discussed
in Section II-1. Both techniques utilize the same boundary layer assumptions and
are applicable only to two-dimensional geometries., Limitations pertaining to
both as well as those affecting each method individually are discussed.

I11-2-1. Both Crocco-Lees and Lees and Reeves. Both methods make the assump-
tion that e<<M where M = M te. As the Mach number increases, the assumption
o
becomes more sgbject toequestion At Mach 2.0, ¢ may be on the order of .01 of

Mé , while for the same Reynolds number at Mach 7, b is about .1 of M . Con-

tlgulng to higher Mach numbers--at Mach 10, € is about .3 of M s WthR certainly
would result in invalidation of the assumption. °b

Figure 4 shows how the absolute value of the ratio of € /Moo varies as a
function of Mach and Reynolds numbers. €, was calculated using equation (18)
and also by using a linearized form in which M_>1. It is noted that the linear-
ized and exact relations approach one another at higher Mach numbers, and that
the ¢ /M°° ratio increases with Mach number. Figure 4 illustrates only the rela-
tion ship at the Blasius point. The linearization assumption becomes subject
to even greater errors downstream from the Blasius point.
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IT-2-2. Crocco-Lees. As brought out in the previous discussions, the
principal limitation in the Crocco-Lees method is the proper selection of the
functions which describe F(K), D(K), and C(X). This may be overcome as more
data becomes available. The results in Part III represent a first attempt at
generalizing the C(K) function in the separation to shock impingement region.

II-2-3. Lees and Reeves. The Lees and Reeves method is dependent upon
finding a correct one-parameter family of velocity profiles. The profile para-
meter, a, which is the dependent variable has a trajectory through the separa-
tion interaction as shown in Figure 5. The attached portions of the boundary
layer (prior to separation and after reattachment) are described by one set of

coefficients in which "a" varies between O and 1.58. In the separated region,

another set of coefficients is used, and, in this case, "a'" can take on values

between 0 and 1. The maximum value of "a" is dependent upon the strength of
the shock. The stronger the shock, the higher the value of "a" obtained. The
problem arises in that for adiabatic separated flows, the profiles have been
solved only in the range O<a<.54, For stronger interactions, an equivalent
Falkner-Skan family of profiles must be solved to evaluate the profiles for

"a" greater than .54.

In applying the Lees and Reeves method, Gulbran et al (14) noted that
they were unab%g to ca%culate the reattachment for the high final pressures
produced by 15 and 22)% ramps at Mach 8.

II-3, Difficulties and Problem Areas in Crocco-Lees Method

II-3-1. Blasius - Separation. The greatest difficulty in this region
appears to be obtaining the desired slope for the pressure distribution. Also,
the curve is approximately straight in many cases and has little curvature at
the Blasius point transition. In general, the calculations yield reasonable
pressure ratios at the separation point despite the way the pressure is distributed
in this region.

The linear approximation for C(K) versus K may not be the optimum one in
this region. Since very few experimental pressure measurements describe the re-
gions immediately adjacent to the separation point, further refinements in C(K)
do not seem to be justified at present for this region. A far more serious
problem in this region results from the interaction induced by the leading edge
of the plate. At lower Mach numbers this may not be significant, but, at higher
values the results become appreciable.

11-3-2. Separation to Shock Impingement. Glick (2) proposes two techniques
for treating the C(K) values in the region between separation and the shock. He
conjectures that C(K) rises from zero at the separation value of K to some max-
imum value at the beginning of the plateau and that C(K) remains constant until
the shock impingement is reached. As an approximation for this distribution of
C(K), Glick offers a "simplified" and "refined" approach. In the simplified case,
C(K) takes on a constant value C throughout the whole region. In the refined
case, C(K) has a value of C, between separation and the plateau and a value of
02 throughout the plateau région. These C(K) curves are illustrated in Figure 6.
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The values of C. = 11.0 and C, = 15.0 were presented by Glick and were
obtained from one se% of experimen%al data (Mach 2.45). These values were sug-
gested as "universal" for all separations. The results of this study indicate
that C(K) takes on a behavior different from that specified by Glick. 1In the
first place, C, does not universally equal 11.0 but appears to have a dependency
on Mach number and possibly on the Reynolds number at the beginning of the inter-
action. A constant value of C, in the plateau region was found to produce a
decreasing pressuure ratio rather than the constant value which is known to exist.
If a constant pressure ratio is to be maintained, the C(K) parameter must con-
tinually increase with increasing K in the plateau.

I1-3-3. Reattachment. The reattachment region has caused considerable
difficulty--particularly in getting a pressure distribution which has the qual-
itatively correct behavior. At the present time it is felt that additional con-
siderations must be given to this treatment before much reliance can be placed
in the method. The calculation difficulties in this region are discussed in
Part ITI.

A problem which will need to be accounted for in this region is the "peak
pressure" which occurs after reattachment--before returning to the value of the
inviscid downstream pressure rise. A pressure overshoot or "peak" is experienced
because the flow near the surface passes through two weaker shocks, while the
flow further out in the free stream crosses only a single, but stronger, shock
system. The double compression by the flow near the surface produces a greater
pressure rise than does the single compression. This peak pressure was not
observed on low Mach number experimental data, while at moderate and high Mach
numbers the overshoot becomes quite noticeable. Present techniques allow only
for the case where the pressure increases and asymptotically approaches the
downstream inviscid value.

It is the reattachment process which governs the size, shape, and scale of
the separated flow region. Unfortunately, the physical conditions near reattach-
ment are virtually unknown at present.

IT-3-4, Coupling Regions Together. The method proposed for coupling the
three regions together was mentioned in Section I-3. It has been found experi-
mentally that the shape of the model causing a disturbance is not a variable
in determining the pressure rise in the vicinity of the separation point. That
is to say, the plateau pressure was found to be independent of the ramp angle
for a given Mach number when the Reynolds number at the beginning of the inter-
action was the same. It is the mixing in the plateau region which is the dom-
inant characteristic in producing the necessary downstream pressure distribution
on the ramp. As the ramp angle increases, the plateau region lengthens to
accommodate a longer mixing region to produce the higher pressure ratio.

In the Crocco-Lees method, K becomes the "measuring stick'" for determining
the amount of mixing (just as "a" does in the Lees and Reeves method) for a par-
ticular configuration and flow condition. As may be seen in Figure 6, K increases
in value as the flow goes from separation to the plateau and then continues on to
the shock impingement point. For given initial conditions at the beginning of
the interaction, K at the shock is directly related to the size of the ramp angle.
A larger ramp angle results in K being larger at the shock, which implies that
a longer plateau or mixing region is required.
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In the reattachment solution, the magnitude of the pressure rise is related
directly to the size of the K change between the shock value and the downstream
Blasius value. This points out that a longer plateau region results in a cor-
respondingly greater reattachment pressure rise.

To tie the parts together, K . must be the value needed to produce the correct
reattachment pressure rise. However, K h is determined by the length of the
plateau region which is related to the fScation of the separation point. Matching
conditions at the ramp corner requires adjusting the location of separation.
Because of the interplay of the variables which are involved, an iteration solu-
tion using the straight dividing streamline is being pursued.

III. EVALUATION OF AVAILABLE EXPERIMENTAL DATA

A current problem common to the study of high velocity laminar separated
flows is the availability of only a limited amount of experimental data. An
effort was made to obtain and use data from a wide variety of conditions in this
study. A total of fourteen cases between Mach 2 and 10 were selected for anal-
ysis.

Several problems arise when a correlation is attempted with data from sev-
eral different facilities and when collected under different conditions. For
example, three-dimensional effects become appreciable at higher Mach numbers
and depend to a degree upon the tunnel facility.

Analysis of Mach 16 data by Miller et al., (15) was attempted, but the lead-
ing edge interaction effects and € values were such that a satisfactory correla-
tion was not possible.

ITI-1. Tabulation of Data Studied

Table I presents in concise form a digest of the data used and the results
obtained from this study. In all cases, a sharp leading edge plate was used.
This avoids the interplay of leading edge effects in the interaction region,

The pressure distributions from five runs (2,4,6,9, and 13) were selected as rep-
resentative and are shown in the next section. The results from all fourteen
runs were used in order to compare Cl versus M_ (see Section III-3).

The Mach 2.45 case is discussed in considerable detail in Section III-2--
since this was the data from which Glick based his results. Several curves
showing the pressure distributions and other important characteristics are pre-
sented in the next section.

III-2. Element Analysis and Experimental Comparisons

This section is devoted to detailing the techniques used and presenting the
results obtained for the different regions. Simplified computer flow diagrams
for the three regions are given in Appendix B.
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TABLE I. - DATA USED IN ANALYTICAL CORRELATIONS

Run Number

Item
1 2 3 4 5 6 7
Mach number 2.0 2.45[ 2.55 3.0 3.0 4.5 4.5
Reference source 2,4 2,4 16 17 17 18 18
Re/In. x 107 15.1 6.0{ 7.09 3.4 3.6 12.0 8.8
x,, in. 1.29 .18 .66 4,25 2.6 5.0 4.7
x_, in. 1.515 .315] 1.05 5.7 3.34 5.66 5.5
X s in. 1.625 46 1.30 6.66 4.15 7.30 6.25
X 1n 1.96 .90| 2.50 8.0 8.0 8.0 8.0
Ramp angle, degrees a a b 10.0 30.0 15.0 15.0
Re, 1074 19.5| 1.08] 4.675 | 14.4 | 9.36 | 60.0| 41.3
€y -.00834 | -.0506 |-.0272 |-.0212 [-.0277 | -.0371| -.0457
|eb/M@| .00417 | .0206| .0107 | .0071 |.00923 | .00825| .0102
K (approx.) .685 .755| .735 .730 .755 .750 .750
K, (approx.) .785 .890 | .885 .805 .910 .785 .810
Approximate C., value| 13-14 11-14{ 10-11 11-13 16-17 13 11-13
(Range indica%ed)
aIncident shock

Unknown, or no value

“No experimental data
Unpublished NASA Langley data
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TABLE I. - DATA USED IN ANALYTICAL CORRELATIONS, continued

It - Run Number
e 8 9 10 11 12 13 14
Mach number 5.8 6.0 8.0 8.0 8.0 8.45 10.03
Reference source 2 d d d d d 19
Re/In. x 10—4 1.16 10.33] 1.835 2.42 3.5 59.0 12.6
X in. .20 3.0 5.0 5.25 5.0 2.5 3.2
Xy in, .54 4.0 7.12 7.5 7.25 3.25 4.0
Xp, in. .716 6.5 b b b 4.5 7.0
Xsh? in, 1.25 6.0 10.0 10.0 10.0 6.0 8.7
o
Ramp angle, degrees c 14.0] 20.0 20.0 20.0 | 14 36° 30.0
Re  x 107% 2.32| 31.0| 9.17 | 12.7 | 17.5 | 147.4{ 40.3
b

€ -.484 -.129| -.622 -.542 -.454 -.221| -.811
leb/Mw| .0833 .0216| .0778 .0678 .0567 .0262 .0809
Kp (approx.) .77 .735| .725 .715 .725 .740 .795
K, (approx.) .90 76| .725 .715 .725 .815 .845
Approximate C.value |5.5-6.5 5-7 6-7 7.5-8.5 7-9 5-6 5-6
(Range indica%ed)

a .

Incident shock

b

cUnknown, or no value

dNo experimental data

Unpublished NASA Langley data
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I11-2-1. Blasius to Separation. The linearized equations which apply be-
tween the Blasius point and separation, (10) and (11), were programmed on an
IBM 7040. The program requires that values of ¢ and g, analogous to Mach and
Reynolds numbers, be chosen for the separation point. Once chosen, these values
are used to start the step-by-step claculation which moves upstream to the Blasius
point in AK increments. The values at the Blasius point are obtained from equa-
tions (17) and (18). Repeated choices of ¢ and 7 at separation must be tried in
order to end with the correct values at the Blasius point. The program, through
repeated iterations, converges on the desired values of ¢ and ¢ at separation.
Once a satisfactory convergence has been obtained, transformation to the real
plane is made by using equation (14). The pressure ratios are calculated by
using the isentropic relationships.

Figures 7 through 11 illustrate the pressure distributions obtained by this
method for five different Mach numbers. In all cases, the separation point was
taken to be the value indicated by a Schlieren photograph, or, when that was not
given, it was taken to be at the location of the steepest slope in the pressure
distribution.

ITI-2-2. Separation to Ramp Corner. In this region, equations (12) and
(13) were programmed for computer solution. The ¢ and f values which had pre-
viously been found at separation were used to start the solution., By fixing
C, as a constant in the separation to plateau region, the program simply marches
in AK steps, calculating the corresponding pressure ratio and x-location value
for each step.

The beginning of the plateau is determined by the pressure gradient be-
coming zero. Between the beginning of the plateau and the shock, a C(K) was
found which makes the pressure gradient remain zero. The solution is terminated
when the ramp corner is reached.

Also shown in Figures 7-11 are the pressure distributions in the separation
to shock impingement region. The C, values which most nearly approximate the
experimental distributions are indicated.

In the pressure plateau region, C(K) was allowed to vary in such a manner
that a constant pressure ratio resulted. For comparison, Figure 12 illustrates
the behavior of C(K) versus K in the plateau region for each of these five
cases. It is noted that C(K) increases with K in all cases--serving as an in-
dication that the mixing becomes more vigorous as one moves down the pressure
plateau, rather than remaining constant as Glick assumed.

III-2-3. Reattachment. A computer program incorporating the discussion
in Section II-1-1 (Reattachment) was used for this region. In general, to
obtain the correct magnitude for the reattachment pressure rise, a K_ . value
larger than that generated in the Separation-Shock Impingement computation was
needed.

Figure 13 illustrates the reattachment solution obtained for the Mach 3.0
case which previously was shown in Figure 8. 1In order to get the plateau and
reattachment regions to join, a longer plateau mixing region would be needed
(to produce a larger K , value). Because there are some apparent difficulties
in the reattachment solution, correlations were attempted only at Mach 2.45
and 3.0.
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I11-2-4., Coupling of Regions. An effort was made to couple the regions
together, and in particular to duplicate the Mach 2.45 solution which Glick
reports. Figure 14 depicts the entire interaction region for Mach 2.45 and
shows both Glick's curve and the curve obtained from this study--using the same
inputs as Glick. By using C, = 11.0 and C, = 15.0, the present study produced
a somewhat different distribiition. The K ; obtained in this study correlated
closely with Glick's value for K _, but tﬁg resulting reattachment pressure
distribution is different. A considerable discontinuity at the ramp cormer is
noted in the present study.

In an attempt to reproduce Glick's Mach 5.8 curve,C, = 11.0 was found to
not be a "universal" value. In this case, a C, value of “approximately 5.0 was
needed to attain the proper pressure plateau ratio, which disagrees with Glick's
conclusions.

Figure 15 gives a visual display of how the three semi-empirical factors
F(K), D(X) and C(K) behave throughout the treatment which has just been out-
lined. The C(K) trajectory shown isn't the optimum one, but it quantitatively
accounts for the pressure distribution ahead of the ramp corner. Refinements
in C(K), particularly in the reattachment region, now seem to be needed to
correct the mismatch in pressure ratios which now exist at the ramp corner.

As a comparison, the Lees and Reeves (5) calculations were performed for
the Mach 3.0 case and the results appear in Figure 8. The technique for solu-
tion is similar to that outlined in Sections III-2-1 and III-2-2 for Glick. 4
The convergence at the Blasius point was found to be very sensitive to the Gt
value chosen. The difficulty apparent in Figure 8 is the occurrence of a s
peak pressure in the plateau region. This may be a result of unsatisfactory
accuracy in the Blasius point convergence.

III-3. Effect of Mach and Reynolds Numbers on C(K)

One objective of this study was to correlate the dependence of C, upon the
Mach and Reynolds number at the beginning of the interaction. This goal has not
been accomplished to the satisfaction of the investigators--due primarily to the
limited variation of Reynolds number in the data treated. It is hoped that this
will be overcome in the near future.

Since only sharp leading edges were considered, the free stream Mach number
and the local Mach number at the beginning of the interaction are nearly the
same——provided that the Reynolds numbers aren't too low. Figure 16 shows a cor-
relation of M_versus C,, based upon the values presented in Table I. A curve
has been drawn which represents a crude correlation of C, versus M _. From
necessity, the dependence of C, upon Reynolds number is %aken as second order
and neglected in the correlation. It is felt that there is a Reynolds number
dependence, but that it cannot be established until more data has been analyzed.
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III-4. Miscellaneous

Future work will include refinements in the numerical integration technique.
Euler's method has been used on all the work to date except for the Lees and
Reeves solution in which a fourth order Runge-Kutta method was used. Now that
the general trends and problems in the solution have been established, a fourth
order Runge-Kutta method of integration is plamned. This should improve the
accuracy without altering the conclusions already reached.

A study by Chapman (4) concluded that in the reattachment region the mixing
was zero for the model used. The mixing in this region is expected to be small,
but not zero. On this basis, the reattachment solution must begin from a new
form of the momentum equation, considerably different from the one presently
being used. Figure 17 illustrates a possible trajectory for C(K), depicting
a different behavior in the reattachment region.

The difficulties in treating rounded leading edges has not been overcome.
Hayes and Probstein (20) define an interaction parameter and correlate this
with both weak and strong interactions (sharp and blunted leading edges res-
pectively). This leading edge effect coupled with the interaction is being
investigated.

IV. SUMMARY AND CONCLUSIONS
IV-1. Principal Results

The present study, while clarifying the understanding up to the shock
location, does not solve the overall interaction. Much of the needed correlation
must await the availability of more experimental data. The following important
points are reiterated to summarize the work that was done:

1. The interaction region prior to shock impingement (or ramp corner) has
been studied in detail to determine the behavior of the semi-empirical corre-
lation factors for the Crocco-Lees and Glick methods. It was found that C(K)
was not a "universal" quantity, as Glick has proposed. In particular, a dep-
endence of C., upon Mach number in the range from 2 to 10 was proposed. The F(K)
and D(K) relations which were used are to be regarded only as first approximationms.

2. As noted just above, as a first approximation, C, has been found as a
function of Mach number only. As more experimental data is analyzed, a depen-
dence of C(K) on both Meb and Reb is anticipated.

3. C(K) was found to be an increasing function in the plateau region, rather
than remaining constant as was previously concluded.

4. The technique for incorporating the whole interaction within a single

framework has been discussed. Further work on the reattachment solution is
needed before this can be completed.
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5. The linearization limitations were discussed. Figure 5 shows the effects
that Mach and Reynolds number have on these assumptions. A high Mach number, or
low Reynolds number, or a combination of these conditions can produce results
which invalidate the linearization assumption that e<< M.

IV-2. Recommendations for Future Study

In addition to coupling the entire flow interaction together and refining
the numerical integration technique, the following recommendations are offered:

1. Remove the linearization which has been placed on the equations which
apply ahead of the ramp corner or shock impingement point. This would necessi-
tate using the local Mach number rather than the free stream value in the cal-
culations. In a computer solution, this should pose no great difficulty.

2. An effort should be made to measure experimentally velocity profiles
in the separated region. This would be helpful in establishing K characteris-
tics for the flow throughout the separated portion of the interaction. Addi-
tionally, £ and K calculations at supersonic speeds, based upon measured at-
tached and separated profiles, would lend considerable support to a refined
understanding of F(K).
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NOMENCLATURE

a velocity profile parameter, speed of sound
b velocity profile parameter (Makofski)
C(K) mixing rate correlation function
E, Cl’ C2 average values of C(K)
ce skin friction coefficient
D(K) skin friction correlation function
£ defined in equation (3)
F, FX) defined in equation (7)
I momentum flux = J pu®dy
k (d§/dx) - @ °
L,N,P,Q arbitrary parameters in equatioms (10) and (11)
m mass flux in the x-direction = jé pudy
)
m m a
M Mach number
Nl’ NZ’ N3, di/da parameters in Lees and Reeves method
P pressure
Re Reynolds number
T temperature
t /T, = -5l ?
u velocity in x-direction
w u/at
X, Yy coordinates along, and normal to, the wall
Y ratio of specific heats
$ boundary layer thickness
5* displacement thickness
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6t transformed displacement thickness
. (Lees and Reeves)
§ momentum thickness
€ M - M
e 00

4 m/utat
K Crocco-Lees velocity profile parameter
u coefficient of viscosity
p density

=1,
¢e (1- 2 we)

YWe
] Streamline direction relative to the wall

at y =3¢

o D(K)

2(1 - K) C(K)

Subscripts

b Blasius flat plate conditions

e conditions at y = ¢

i incompressible conditions

r's p, plat plateau

r reattachment point

s conditions at separation

sh conditions at shock impingement
t free stream stagnation conditions
X at location x

1 mean value of viscous region

@ free stream conditions




APPENDIX A
OTHER ANALYTICAL METHODS
Dorodnitsyn

In the continuing review of literature the Dorodnitsyn method (11, 12) is
found to be mentioned with greater frequency. This technique, a general method
of numerical solution for nonlinear hydrodynamic problems, is often refered to
as the "method of integral relations" and has the important advantage of being
well-suited for digital computation. The method is new and promising, but has
some inherent difficulties. Principal among these is the fact that the one-
parameter family of velocity profiles used does not accurately represent all
the possible velocity profiles that can be developed in separated and attached
flows.,

Erdos and Pallone

The method given by Erdos and Pallone (13) deals specifically with the
separation caused by a compression corner in supersonic flow. This method. makes
use of the concept of a "free interaction" for both laminar and turbulent flows.
The analysis treats this complex separation phenomenon in two phases:

1. A study of shock-boundary layer interaction (without specifi-
cation of the location of the interaction with respect to the
compression corner.)

2. Application of the results of the first phase to the problem
of flow separation in a compression corner, and determination
of the location of the separation and reattachment interactionm.

The results of the free interaction theory provide a means of predicting the
occurrence of separation and the pressure distribution in the vicinity of the
separation point (and possibly the reattachment point), but they do not locate
the separated flow with respect to the geometry that originally caused the
separation. These semi-empirical equations for the pressure distribution in the
"free interaction'" are strictly applicable only for perfect gases.

The location of the separation and reattachment points has been fixed by
an empirical correlation formula. With the correlation formula and.the "free
interaction" equations, it is possible to predict the complete pressure dis-
tribution for a shock-separated flow. However, a limitatation mentioned is
that this correlation formula is based upon very meager data, a single experi-
ment, and is only a first approximation. Additional data is needed to confirm
and extend the results.
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Pinkus Method

A system of equations was developed by Pinkus (14) which applies to the case
of separated laminar boundary layers on compression corners and curved surfaces.
This method is an extension of Tani's (15) work, which had applied only to
attached flows. Both methods use a quartic velocity profile and make use of
the moment-of -momentum boundary layer equation. The profiles are defined in
terms of an arbitrary parameter "a" which has physical meaning in that it is
proportional to the shearing stress at the wall,

The separated boundary layer is divided into three regions: the detachment,
central, and reattachment. The end conditions at the reattachment point impose
the constraining restrictions on the solution when the three regions are combined.

Makofski Method

The Makofski (16) method uses a modified Pohlhausen approach with the ve-
locity distribution represented by a fifth-degree polynomial with two undetermined
parameters. One of the parameters is related to the skin friction at the wall,
while the other is proportional to the imposed pressure gradient.

The method of analysis used consists of transforming the compressible laminar
boundary layer equations into incompressible form, obtaining the integral rela-
tions, and finally, solving these relations by use of the fifth-degree polynomial.
The parameters a and b which describe the velocity profiles are dependent only
upon the local Mach number and Reynolds number and are independent of the agency
causing the disturbance.

As with other methods using the Pohlhausen approach, the primary difficulty
lies in its application to the constant pressure plateau region downstream of
separation. There are additional mathematical complexities in the two-parameter
approach--the only justification being the possibility of obtaining signifi-
cantly better results. At higher Mach numbers where three-dimensional effects
are significant, it is possible that a two-parameter approach may be needed.
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APPENDIX B
IMPLIFIED COMPUTER FLOW DIAGRAMS

Inputs: M_, Re/In., x_, x , K,
Y, € , ACC (accuracy factor)
Dimension Statement:

Calculate: Blasius conditions
using equations 17 and 18.
Calculate: 1Initial value for Cs

]

K

Yes No
Is K+AK =2 .693 ?

Calcul
New

ate:
AKX

Solve:

Equations 10 and 11

for one step in the numerical

| integration process

Initialize starting
conditions:

Store:

I

Calculate: New €& or
gs as needed

Results of previous

step in dimension statement
Calculate: Initial conditioms
for next step in integration

!

_zfi___<<4Was

No

new AK used? >N°

integration with the Blasius
values previously calculated

Compare: Final {. and from the

<:Was accuracy sufficient?> Yes

Calculate:

From stored data,

calculate pressure ratio and
x~-length using equation 14 and
isentropic relationships.

Print: Columns of output data

End

Figure 18, Simplified Flow Diagram for Crocco-Lees Method

(Blasius Flow - Separation Point)
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Input: M , 4K, v, X_s Es’ X

€gr Re/In., € C1

sh?

Print: Initial headings

Solve: Equations 12 and 13 for
one AK step in the numerical
integration

Calculate: Pressure ratio and
x-length using equation 14 and
isentropic relationships

Print: Output for AK step

Yes,//ﬁas x-corner (or x-shock

) No
4\\\been reached?

equations 12 and 13
maintains dp/dx = 0

—1 Calculate: Initial
Calculate: C(K) such conditions for next
that the solution of numerical step

Read new input
data

f

Yes //// Has the pressure
M \\\\ plateau been reached

(dp/dx

0)?

Yes ,// No
\\\, Is there more data?

End

Figure 19. Simplified Flow Diagram for Crocco-Lees Method
(Separation Point - Shock Impingement)
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Yes

Input: M

X M

p’ Eps Ksh’

o’ Meb’ M downstream?
Re/In.,y, (p/p )

ep® "eg

downstream
sz xss XSh’ Kb’ AK: CS’ KP’

2

Calculate: Corrected Re/In.

Print: Initial headings

reattachment.

Calculate: Mach number and pres-
sure ratio at beginning of

Print: Output calculations

Is K - AK < K ?

P

Calculate:
New AK

I

Yes

Solve: Equation 16 for ome
step in the numerical
integration

Calculate: Mach number and
pressure ratio for this
step

Print: Output for AK step

End

Figure 20.

<<: Was new AK used? j:>§2

i

Calculate: 1Initial
conditions for next

numerical step

I

Simplified Flow Diagram for Crocco-Lees Method

(Reattachment)

NASA-Langley, 1967 —— 12 CR-TL45
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