89 research outputs found

    Stressed Out: Endogenous Aldehydes Damage Hematopoietic Stem Cells

    Get PDF
    Despite a well-defined role for the Fanconi anemia (FA) pathway in mediating DNA repair, the mechanisms underlying the bone marrow failure in FA patients are poorly defined. Recently in Nature, Garaycoechea et al. (2012), identify aldehyde-mediated genotoxicity of hematopoietic stem cells as a cause for bone marrow failure

    The blockchain: a new framework for robotic swarm systems

    Get PDF
    Swarms of robots will revolutionize many industrial applications, from targeted material delivery to precision farming. However, several of the heterogeneous characteristics that make them ideal for certain future applications --- robot autonomy, decentralized control, collective emergent behavior, etc. --- hinder the evolution of the technology from academic institutions to real-world problems. Blockchain, an emerging technology originated in the Bitcoin field, demonstrates that by combining peer-to-peer networks with cryptographic algorithms a group of agents can reach an agreement on a particular state of affairs and record that agreement without the need for a controlling authority. The combination of blockchain with other distributed systems, such as robotic swarm systems, can provide the necessary capabilities to make robotic swarm operations more secure, autonomous, flexible and even profitable. This work explains how blockchain technology can provide innovative solutions to four emergent issues in the swarm robotics research field. New security, decision making, behavior differentiation and business models for swarm robotic systems are described by providing case scenarios and examples. Finally, limitations and possible future problems that arise from the combination of these two technologies are described

    The Political Economy of the 2014-2020 Common Agricultural Policy: An Imperfect Storm. CEPS Paperback, 17 August 2015

    Get PDF
    After five years of debates, consultations and negotiations, the European institutions reached an agreement in 2013 on the Common Agricultural Policy (CAP) for the 2014-2020 period. The outcome has major implications for the EU’s budget and farmers’ incomes but also for Europe’s environment, its contribution to global climate change and to food security in the EU and in the world. It was decided to spend more than €400 billion during the rest of the decade on the CAP.The official claims are that the new CAP will take better account of society's expectations and lead to far-reaching changes by making subsidies fairer and ‘greener’ and making the CAP more efficient. It is also asserted that the CAP will play a key part in achieving the overall objective of promoting smart, sustainable and inclusive growth. However, there is significant scepticism about these claims and disappointment with the outcome of the decision-making, the first in which the European Parliament was involved under the co-decision procedure. In contrast to earlier reforms where more substantive changes were made to the CAP, the factors that induced the policy discussions in 2008-13 and those that influenced the decision-making did not reinforce each other. On the contrary, they sometimes counteracted one another, yielding an ‘imperfect storm’ as it were, resulting in more status quo and fewer changes. This book discusses the outcome of the decision-making and the factors that influenced the policy choices and decisions. It brings together contributions from leading academics from various disciplines and policy-makers, and key participants in the process from the European Commission and the European Parliament

    Fanconi-BRCA pathway mutations in childhood T-cell acute lymphoblastic leukemia

    Get PDF
    BRCA2 (also known as FANCD1) is a core component of the Fanconi pathway and suppresses transformation of immature T-cells in mice. However, the contribution of Fanconi-BRCA pathway deficiency to human T-cell acute lymphoblastic leukemia (T-ALL) remains undefined. We identified point mutations in 9 (23%) of 40 human T-ALL cases analyzed, with variant allele fractions consistent with heterozygous mutations early in tumor evolution. Two of these mutations were present in remission bone marrow specimens, suggesting germline alterations. BRCA2 was the most commonly mutated gene. The identified Fanconi-BRCA mutations encode hypomorphic or null alleles, as evidenced by their inability to fully rescue Fanconi-deficient cells from chromosome breakage, cytotoxicity and/or G2/M arrest upon treatment with DNA cross-linking agents. Disabling the tumor suppressor activity of the Fanconi-BRCA pathway is generally thought to require biallelic gene mutations. However, all mutations identified were monoallelic, and most cases appeared to retain expression of the wild-type allele. Using isogenic T-ALL cells, we found that BRCA2 haploinsufficiency induces selective hypersensitivity to ATR inhibition, in vitro and in vivo. These findings implicate Fanconi-BRCA pathway haploinsufficiency in the molecular pathogenesis of T-ALL, and provide a therapeutic rationale for inhibition of ATR or other druggable effectors of homologous recombination

    Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis

    Get PDF
    SummaryPolycythemia vera (PV), essential thrombocythemia (ET), and myeloid metaplasia with myelofibrosis (MMM) are clonal disorders arising from hematopoietic progenitors. An internet-based protocol was used to collect clinical information and biological specimens from patients with these diseases. High-throughput DNA resequencing identified a recurrent somatic missense mutation JAK2V617F in granulocyte DNA samples of 121 of 164 PV patients, of which 41 had homozygous and 80 had heterozygous mutations. Molecular and cytogenetic analyses demonstrated that homozygous mutations were due to duplication of the mutant allele. JAK2V617F was also identified in granulocyte DNA samples from 37 of 115 ET and 16 of 46 MMM patients, but was not observed in 269 normal individuals. In vitro analysis demonstrated that JAK2V617F is a constitutively active tyrosine kinase

    Proteasome Inhibitors Block DNA Repair and Radiosensitize Non-Small Cell Lung Cancer

    Get PDF
    Despite optimal radiation therapy (RT), chemotherapy and/or surgery, a majority of patients with locally advanced non-small cell lung cancer (NSCLC) fail treatment. To identify novel gene targets for improved tumor control, we performed whole genome RNAi screens to identify knockdowns that most reproducibly increase NSCLC cytotoxicity. These screens identified several proteasome subunits among top hits, including the topmost hit PSMA1, a component of the core 20 S proteasome. Radiation and proteasome inhibition showed synergistic effects. Proteasome inhibition resulted in an 80–90% decrease in homologous recombination (HR), a 50% decrease in expression of NF-κB-inducible HR genes BRCA1 and FANCD2, and a reduction of BRCA1, FANCD2 and RAD51 ionizing radiation-induced foci. IκBα RNAi knockdown rescued NSCLC radioresistance. Irradiation of mice with NCI-H460 xenografts after inducible PSMA1 shRNA knockdown markedly increased murine survival compared to either treatment alone. Proteasome inhibition is a promising strategy for NSCLC radiosensitization via inhibition of NF-κB-mediated expression of Fanconi Anemia/HR DNA repair genes.American Society for Radiation Oncology (Junior Faculty Career Research Training Award)Harvard University. Joint Center for Radiation Therapy (Foundation Grant)Dana-Farber/Harvard Cancer Center (SPORE Developmental Research Project Award in Lung Cancer Research)National Cancer Institute (U.S.) (Award K08CA172354

    Author Correction: The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data

    Get PDF
    corecore