24 research outputs found

    Towards a threshold climate for emergency lower respiratory hospital admissions

    Get PDF
    Identification of ‘cut-points’ or thresholds of climate factors would play a crucial role in alerting risks of climate change and providing guidance to policymakers. This study investigated a ‘Climate Threshold’ for emergency hospital admissions of chronic lower respiratory diseases by using a distributed lag non-linear model (DLNM). We analysed a unique longitudinal dataset (10 years, 2000–2009) on emergency hospital admissions, climate, and pollution factors for the Greater London. Our study extends existing work on this topic by considering non-linearity, lag effects between climate factors and disease exposure within the DLNM model considering B-spline as smoothing technique. The final model also considered natural cubic splines of time since exposure and ‘day of the week’ as confounding factors. The results of DLNM indicated a significant improvement in model fitting compared to a typical GLM model. The final model identified the thresholds of several climate factors including: high temperature (≄≄27 °C), low relative humidity (≀≀ 40%), high Pm10 level (≄≄70-”g/m3), low wind speed (≀≀ 2 knots) and high rainfall (≄≄30 mm). Beyond the threshold values, a significantly higher number of emergency admissions due to lower respiratory problems would be expected within the following 2–3 days after the climate shift in the Greater London. The approach will be useful to initiate ‘region and disease specific’ climate mitigation plans. It will help identify spatial hot spots and the most sensitive areas and population due to climate change, and will eventually lead towards a diversified health warning system tailored to specific climate zones and populations

    Seasonal effects on reconciliation in Macaca Fuscata Yakui

    Get PDF
    Dietary composition may have profound effects on the activity budgets, levelof food competition, and social behavior of a species. Similarly, in seasonally breeding species, the mating season is a period in which competition for mating partners increases, affecting amicable social interactions among group members. We analyzed the importance of the mating season and of seasonal variations in dietary composition and food competition on econciliation in wild female Japanese macaques (Macaca fuscata yakui) on Yakushima Island, Japan. Yakushima macaques are appropriate subjects because they are seasonal breeders and their dietary composition significantly changes among the seasons. Though large differences occurred between the summer months and the winter and early spring months in activity budgets and the consumption of the main food sources, i.e., fruits, seeds, and leaves, the level of food competition and conciliatory tendency remained unaffected. Conversely,conciliatory tendency is significantly lower during the mating season than in the nonmating season. Moreover, conciliatory tendency is lower when 1 or both female opponents is in estrous than when they are not. Thus the mating season has profound effects on reconciliation, whereas seasonal changes in activity budgets and dietary composition do not. The detrimental effects of the mating season on female social relationships and reconciliation may be due to the importance of female competition for access to male partners in multimale, multifemale societies

    N2O Temporal Variability from the Middle Troposphere to the Middle Stratosphere Based on Airborne and Balloon-Borne Observations during the Period 1987–2018

    Get PDF
    Nitrous oxide (N2O) is the fourth most important greenhouse gas in the atmosphere and is considered the most important current source gas emission for global stratospheric ozone depletion (O3 ). It has natural and anthropogenic sources, mainly as an unintended by-product of food production activities. This work examines the identification and quantification of trends in the N2O concentration from the middle troposphere to the middle stratosphere (MTMS) by in situ and remote sensing observations. The temporal variability of N2O is addressed using a comprehensive dataset of in situ and remote sensing N2O concentrations based on aircraft and balloon measurements in the MTMS from 1987 to 2018. We determine N2O trends in the MTMS, based on observations. This consistent dataset was also used to study the N2O seasonal cycle to investigate the relationship between abundances and its emission sources through zonal means. The results show a longterm increase in global N2O concentration in the MTMS with an average of 0.89 ± 0.07 ppb/yr in the troposphere and 0.96 ± 0.15 ppb/yr in the stratosphere, consistent with 0.80 ppb/yr derived from ground-based measurements and 0.799 ± 0.024 ppb/yr ACE-FTS (Atmospheric Chemistry Experiment Fourier Transform Spectrometer) satellite measurements

    N2_2O Temporal Variability from the Middle Troposphere to the Middle Stratosphere Based on Airborne and Balloon-Borne Observations during the Period 1987–2018

    Get PDF
    Nitrous oxide (N2_2O) is the fourth most important greenhouse gas in the atmosphere and is considered the most important current source gas emission for global stratospheric ozone depletion (O3_3). It has natural and anthropogenic sources, mainly as an unintended by-product of food production activities. This work examines the identification and quantification of trends in the N2_2O concentration from the middle troposphere to the middle stratosphere (MTMS) by in situ and remote sensing observations. The temporal variability of N2_2O is addressed using a comprehensive dataset of in situ and remote sensing N2_2O concentrations based on aircraft and balloon measurements in the MTMS from 1987 to 2018. We determine N2_2O trends in the MTMS, based on observations. This consistent dataset was also used to study the N2_2O seasonal cycle to investigate the relationship between abundances and its emission sources through zonal means. The results show a long-term increase in global N2_2O concentration in the MTMS with an average of 0.89 ± 0.07 ppb/yr in the troposphere and 0.96 ± 0.15 ppb/yr in the stratosphere, consistent with 0.80 ppb/yr derived from ground-based measurements and 0.799 ± 0.024 ppb/yr ACE-FTS (Atmospheric Chemistry Experiment Fourier Transform Spectrometer) satellite measurements
    corecore