101 research outputs found

    Letter to the Editor

    Get PDF

    Neural crest cell-derived pericytes act as pro-angiogenic cells in human neocortex development and gliomas

    Get PDF
    Central nervous system diseases involving the parenchymal microvessels are frequently associated with a 'microvasculopathy', which includes different levels of neurovascular unit (NVU) dysfunction, including blood-brain barrier alterations. To contribute to the understanding of NVU responses to pathological noxae, we have focused on one of its cellular components, the microvascular pericytes, highlighting unique features of brain pericytes with the aid of the analyses carried out during vascularization of human developing neocortex and in human gliomas. Thanks to their position, centred within the endothelial/glial partition of the vessel basal lamina and therefore inserted between endothelial cells and the perivascular and vessel-associated components (astrocytes, oligodendrocyte precursor cells (OPCs)/NG2-glia, microglia, macrophages, nerve terminals), pericytes fulfil a central role within the microvessel NVU. Indeed, at this critical site, pericytes have a number of direct and extracellular matrix molecule- and soluble factor-mediated functions, displaying marked phenotypical and functional heterogeneity and carrying out multitasking services. This pericytes heterogeneity is primarily linked to their position in specific tissue and organ microenvironments and, most importantly, to their ontogeny. During ontogenesis, pericyte subtypes belong to two main embryonic germ layers, mesoderm and (neuro)ectoderm, and are therefore expected to be found in organs ontogenetically different, nonetheless, pericytes of different origin may converge and colonize neighbouring areas of the same organ/apparatus. Here, we provide a brief overview of the unusual roles played by forebrain pericytes in the processes of angiogenesis and barriergenesis by virtue of their origin from midbrain neural crest stem cells. A better knowledge of the ontogenetic subpopulations may support the understanding of specific interactions and mechanisms involved in pericyte function/dysfunction, including normal and pathological angiogenesis, thereby offering an alternative perspective on cell subtype-specific therapeutic approaches

    Molecular profiling of male breast cancer by multigene panel testing: Implications for precision oncology

    Get PDF
    Introduction: Compared with breast cancer (BC) in women, BC in men is a rare disease with genetic and molecular peculiarities. Therapeutic approaches for male BC (MBC) are currently extrapolated from the clinical management of female BC, although the disease does not exactly overlap in males and females. Data on specific molecular biomarkers in MBC are lacking, cutting out male patients from more appropriate therapeutic strategies. Growing evidence indicates that Next Generation Sequencing (NGS) multigene panel testing can be used for the detection of predictive molecular biomarkers, including Tumor Mutational Burden (TMB) and Microsatellite Instability (MSI). Methods: In this study, NGS multigene gene panel sequencing, targeting 1.94 Mb of the genome at 523 cancer-relevant genes (TruSight Oncology 500, Illumina), was used to identify and characterize somatic variants, Copy Number Variations (CNVs), TMB and MSI, in 15 Formalin-Fixed Paraffin-Embedded (FFPE) male breast cancer samples. Results and discussion: A total of 40 pathogenic variants were detected in 24 genes. All MBC cases harbored at least one pathogenic variant. PIK3CA was the most frequently mutated gene, with six (40.0%) MBCs harboring targetable PIK3CA alterations. CNVs analysis showed copy number gains in 22 genes. No copy number losses were found. Specifically, 13 (86.7%) MBCs showed gene copy number gains. MYC was the most frequently amplified gene with eight (53.3%) MBCs showing a median fold-changes value of 1.9 (range 1.8-3.8). A median TMB value of 4.3 (range 0.8-12.3) mut/Mb was observed, with two (13%) MBCs showing high-TMB. The median percentage of MSI was 2.4% (range 0-17.6%), with two (13%) MBCs showing high-MSI. Overall, these results indicate that NGS multigene panel sequencing can provide a comprehensive molecular tumor profiling in MBC. The identification of targetable molecular alterations in more than 70% of MBCs suggests that the NGS approach may allow for the selection of MBC patients eligible for precision/targeted therapy

    The Glucose Transporter 2 regulates CD8+ T cell function via environment sensing

    Get PDF
    T cell activation is associated with a profound and rapid metabolic response to meet increased energy demands for cell division, differentiation and development of effector function. Glucose uptake and engagement of the glycolytic pathway are major checkpoints for this event. Here we show that the low-affinity, concentration-dependent glucose transporter 2 (Glut2) regulates the development of CD8+ T cell effector responses in mice by promoting glucose uptake, glycolysis and glucose storage. Expression of Glut2 is modulated by environmental factors including glucose and oxygen availability and extracellular acidification. Glut2 is highly expressed by circulating, recently primed T cells, allowing efficient glucose uptake and storage. In glucose-deprived inflammatory environments, Glut2 becomes downregulated, thus preventing passive loss of intracellular glucose. Mechanistically, Glut2 expression is regulated by a combination of molecular interactions involving hypoxia-inducible factor-1 alpha, galectin-9 and stomatin. Finally, we show that human T cells also rely on this glucose transporter, thus providing a potential target for therapeutic immunomodulation

    A Western single-center experience with endoscopic submucosal dissection for early gastrointestinal cancers

    No full text
    Endoscopic submucosal dissection (ESD) has gained worldwide acceptance as a treatment for early gastrointestinal cancers (EGICs). However, the management of these tumors in the Western world is still mainly surgical. Our aim was to evaluate the safety and feasibility of ESD at a European center. Based on the knowledge transferred by one of the most experienced Japanese institutions, we conducted a pilot study on 25 consecutive patients with EGICs located in the esophagus (n = 3), stomach (n = 7), duodenum (n = 1), and colon (n = 14) at our tertiary center over a 2-year-period. The main outcome measurements were complete (R0) resection, as well as en-bloc resection and the management of complications. The R0 and en-bloc resection rates were 100% and 84%, respectively. There were three cases of bleeding and five cases of perforation. With a median follow up of 18 months, two recurrences were observed. We conclude that ESD for early esophageal and gastric cancers is feasible and effective, while colonic ESD requires more expertise

    Efficient mitochondrial biogenesis drives incomplete penetrance in Leber's hereditary optic neuropathy

    Get PDF
    Leber's hereditary optic neuropathy is a maternally inherited blinding disease caused as a result of homoplasmic point mutations in complex I subunit genes of mitochondrial DNA. It is characterized by incomplete penetrance, as only some mutation carriers become affected. Thus, the mitochondrial DNA mutation is necessary but not sufficient to cause optic neuropathy. Environmental triggers and genetic modifying factors have been considered to explain its variable penetrance. We measured the mitochondrial DNA copy number and mitochondrial mass indicators in blood cells from affected and carrier individuals, screening three large pedigrees and 39 independently collected smaller families with Leber's hereditary optic neuropathy, as well as muscle biopsies and cells isolated by laser capturing from post-mortem specimens of retina and optic nerves, the latter being the disease targets. We show that unaffected mutation carriers have a significantly higher mitochondrial DNA copy number and mitochondrial mass compared with their affected relatives and control individuals. Comparative studies of fibroblasts from affected, carriers and controls, under different paradigms of metabolic demand, show that carriers display the highest capacity for activating mitochondrial biogenesis. Therefore we postulate that the increased mitochondrial biogenesis in carriers may overcome some of the pathogenic effect of mitochondrial DNA mutations. Screening of a few selected genetic variants in candidate genes involved in mitochondrial biogenesis failed to reveal any significant association. Our study provides a valuable mechanism to explain variability of penetrance in Leber's hereditary optic neuropathy and clues for high throughput genetic screening to identify the nuclear modifying gene(s), opening an avenue to develop predictive genetic tests on disease risk and therapeutic strategies.TelethonAssociazione Serena Talarico per i giovani nel mondo and Fondazione Giuseppe Tomasello O.N.L.U.S.Mitocon OnlusResearch to Prevent BlindnessInternational Foundation for Optic Nerve Diseases (IFOND)Struggling Within Leber'sPoincenot FamilyEierman FoundationNational Eye InstituteUniv Rome, Dept Radiol Oncol & Pathol, Rome, ItalyUniv Bologna, Dept Biomed & NeuroMotor Sci DIBINEM, Bologna, ItalyUniv Bari, Dept Biosci Biotechnol & Biopharmaceut, Bari, ItalyBellaria Hosp, IRCCS Ist Sci Neurol Bologna, I-40139 Bologna, ItalyUSC, Keck Sch Med, Dept Ophthalmol, Los Angeles, CA USAUSC, Keck Sch Med, Dept Neurosurg, Los Angeles, CA USAUniv Trieste, Dept Reprod Sci Dev & Publ Hlth, Trieste, ItalyUniv Trieste, IRCCS Burlo Garofolo Children Hosp, Trieste, ItalyNewcastle Univ, Inst Med Genet, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, EnglandFdn Ist Neurol Carlo Besta IRCCS, Unit Mol Neurogenet, Milan, ItalyMRC Mitochondrial Biol Unit, Cambridge, EnglandFed Univ São Paulo UNIFESP, Dept Ophthalmol, São Paulo, BrazilUniv São Paulo, Inst Psychol, Dept Expt Psychol, São Paulo, BrazilStudio Oculist dAzeglio, Bologna, ItalyOsped San Giovanni Evangelista, Tivoli, ItalyAzienda Osped San Camillo Forlanini, Rome, ItalyUniv Rome, Dipartimento Metodi & Modelli Econ Finanza & Terr, Rome, ItalyUniv Rome, Dept Mol Med, Rome, ItalyFed Univ São Paulo UNIFESP, Dept Ophthalmol, São Paulo, BrazilTelethon: GGP06233Telethon: GGP11182Telethon: GPP10005National Eye Institute: EY03040Web of Scienc

    Guidelines for autopsy investigation of sudden cardiac death: 2017 update from the Association for European Cardiovascular Pathology.

    Get PDF
    Although sudden cardiac death (SCD) is one of the most important modes of death in Western countries, pathologists and public health physicians have not given this problem the attention it deserves. New methods of preventing potentially fatal arrhythmias have been developed and the accurate diagnosis of the causes of SCD is now of particular importance. Pathologists are responsible for determining the precise cause and mechanism of sudden death but there is still considerable variation in the way in which they approach this increasingly complex task. The Association for European Cardiovascular Pathology has developed these guidelines, which represent the minimum standard that is required in the routine autopsy practice for the adequate investigation of SCD. The present version is an update of our original article, published 10 years ago. This is necessary because of our increased understanding of the genetics of cardiovascular diseases, the availability of new diagnostic methods, and the experience we have gained from the routine use of the original guidelines. The updated guidelines include a detailed protocol for the examination of the heart and recommendations for the selection of histological blocks and appropriate material for toxicology, microbiology, biochemistry, and molecular investigation. Our recommendations apply to university medical centers, regionals hospitals, and all healthcare professionals practicing pathology and forensic medicine. We believe that their adoption throughout Europe will improve the standards of autopsy practice, allow meaningful comparisons between different communities and regions, and permit the identification of emerging patterns of diseases causing SCD. Finally, we recommend the development of regional multidisciplinary networks of cardiologists, geneticists, and pathologists. Their role will be to facilitate the identification of index cases with a genetic basis, to screen appropriate family members, and ensure that appropriate preventive strategies are implemented

    Hematopoiesis and Mast Cell Development

    No full text
    Hematopoietic stem cells (HSCs) are defined based on their capacity to replenish themselves (self-renewal) and give rise to all mature hematopoietic cell types (multi-lineage differentiation) over their lifetime. HSCs are mainly distributed in the bone marrow during adult life, harboring HSC populations and a hierarchy of different kinds of cells contributing to the "niche" that supports HSC regulation, myelopoiesis, and lymphopoiesis. In addition, HSC-like progenitors, innate immune cell precursors such as macrophages, mast cells, natural killer cells, innate lymphoid cells, and megakaryocytes and erythrocyte progenitor cells are connected by a series of complex ontogenic relationships. The first source of mast cells is the extraembryonic yolk sac, on embryonic day 7. Mast cell progenitors circulate and enter peripheral tissues where they complete their differentiation. Embryonic mast cell populations are gradually replaced by definitive stem cell-derived progenitor cells. Thereafter, mast cells originate from the bone marrow, developing from the hematopoietic stem cells via multipotent progenitors, common myeloid progenitors, and granulocyte/monocyte progenitors. In this review article, we summarize the knowledge on mast cell sources, particularly focusing on the complex and multifaceted mechanisms intervening between the hematopoietic process and the development of mast cells

    Bone angiocrine factors

    No full text
    Angiogenesis in the bone is unique and involves distinctive signals. Whether they are created through intramembranous ossification or endochondral ossification, bones are highly vascularized tissues. Long bones undergo a sequence of processes known as endochondral osteogenesis. Angiogenesis occurs during the creation of endochondral bone and is mediated by a variety of cells and factors. An initially avascular cartilage template is invaded by blood vessels from the nearby subchondral bone thanks to the secreted angiogenic chemicals by hypertrophic chondrocytes. Vascular endothelial growth factor (VEGF), one of several angiogenic molecules, is a significant regulator of blood vessel invasion, cartilage remodeling, and ossification of freshly created bone matrix; chondrocyte proliferation and hypertrophy are facilitated by the production of VEGFA and VEGF receptor-2 (VEGFR-2), which is stimulated by fibroblast growth factors (FGFs). NOTCH signaling controls blood capillaries formation during bone maturation and regeneration, while hypoxia-inducible factor 1 alpha (HIF1-a) promotes chondrocyte development by switching to anaerobic metabolism. To control skeletal remodeling and repair, osteogenic cells release angiogenic factors, whereas endothelial cells secrete angiocrine factors. One of the better instances of functional blood vessels specialization for certain organs is the skeletal system. A subpopulation of capillary endothelial cells in the bone regulate the activity of osteoprogenitor cells, which in turn affects bone formation during development and adult homeostasis. Angiogenesis and osteogenesis are strictly connected, and their crosstalk is essential to guarantee bone formation and to maintain bone homeostasis. Additionally, pathological processes including inflammation, cancer, and aging include both bone endothelial cells and angiocrine factors. Therefore, the study and understanding of these mechanisms is fundamental, because molecules and factors involved may represent key targets for novel and advanced therapies
    corecore