423 research outputs found

    The International Committee of the Red Cross and Its Contribution to the Development of International Humanitarian Law in Specialized Instruments

    Get PDF
    The main instruments of international humanitarian law are the four Geneva Conventions of 1949 and their two Additional Protocols of 1977. These treaties cover the core aspects of international humanitarian law: protections for certain persons and property that are, or may be, affected by international or non-international armed conflict, as well as general limitations on the methods and means of warfare (the law on the conduct of hostilities). International humanitarian law is, however, not limited to these instruments. Other treaties deal with more specific issues, such as restricting the use of certain weapons. The following sections discuss the ICRC\u27s involvement in the development and negotiations of the Convention on the Prohibition of Anti- personnel Mines and of the Rome Statute establishing the International Criminal Court as case studies. They provide a good indication of the varied and dynamic functions played by the ICRC in the development of international humanitarian law

    Interpreting process data of wet pressing process: Part 1: Theoretical approach

    Get PDF
    The wet pressing process represents a new production method for carbon fibre-reinforced plastics components. Due to the low cycle times, it is suitable for use in the automotive industry. Therefore, a sufficient degree of industrialisation needs to be achieved, which is characterised by a stable process. The knowledge about relevant process parameters, their interactions, and influence on the part quality builds the basis of an economic process. This is a major challenge, since in the early stage of process development the available amount of recorded process data is small and the data sets are not complete. As the implementation of time-, material-, and cost-intensive experiments represents no acceptable alternative, a theoretical approach is chosen. This article describes a theoretical procedure to define the critical factors of the wet pressing process with significantly less resource input

    Bioactive Nitrosylated and Nitrated N-(2-hydroxyphenyl)acetamides and Derived Oligomers: An Alternative Pathway to 2-Amidophenol-Derived Phytotoxic Metabolites

    Full text link
    Incubation of Aminobacter aminovorans, Paenibacillus polymyxa, and Arthrobacter MPI764 with the microbial 2-benzoxazolinone (BOA)-degradation-product 2-acetamido-phenol, produced from 2-aminophenol, led to the recently identified N-(2-hydroxy-5-nitrophenyl) acetamide, to the hitherto unknown N-(2-hydroxy-5-nitrosophenyl)acetamide, and to N-(2-hydroxy-3-nitrophenyl)acetamide. As an alternative to the formation of phenoxazinone derived from aminophenol, dimers- and trimers-transformation products have been found. Identification of the compounds was carried out by LC/HRMS and MS/MS and, for the new structure N-(2-hydroxy-5-nitrosophenyl)acetamide, additionally by 1D- and 2D-NMR. Incubation of microorganisms, such as the soil bacteria Pseudomonas laurentiana, Arthrobacter MPI763, the yeast Papiliotrema baii and Pantoea ananatis, and the plants Brassica oleracea var. gongylodes L. (kohlrabi) and Arabidopsis thaliana Col-0, with N-(2-hydroxy-5-nitrophenyl) acetamide, led to its glucoside derivative as a prominent detoxification product; in the case of Pantoea ananatis, this was together with the corresponding glucoside succinic acid ester. In contrast, Actinomucor elegans consortium synthesized 2-acetamido-4-nitrophenyl sulfate. 1 mM bioactive N-(2-hydroxy-5-nitrophenyl) acetamide elicits alterations in the Arabidopsis thaliana expression profile of several genes. The most responsive upregulated gene was pathogen-inducible terpene synthase TPS04. The bioactivity of the compound is rapidly annihilated by glucosylation

    Nitrogen deficiency in Arabidopsis affects galactolipid composition and gene expression and results in accumulation of fatty acid phytyl esters

    Get PDF
    Nitrogen is an essential nutrient for plants because it represents a major constituent of numerous cellular compounds, including proteins, amino acids, nucleic acids and lipids. While N deprivation is known to have severe consequences for primary carbon metabolism, the effect on chloroplast lipid metabolism has not been analysed in higher plants. Nitrogen limitation in Arabidopsis led to a decrease in the chloroplast galactolipid monogalactosyldiacylglycerol (MGDG) and a concomitant increase in digalactosyldiacylglycerol (DGDG), which correlated with an elevated expression of the DGDG synthase genes DGD1 and DGD2. The amounts of triacylglycerol and free fatty acids increased during N deprivation. Furthermore, phytyl esters accumulated containing medium-chain fatty acids (12:0, 14:0) and a large amount of hexadecatrienoic acid (16:3). Fatty acid phytyl esters were localized to chloroplasts, in particular to thylakoids and plastoglobules. Different polyunsaturated acyl groups were found in phytyl esters accumulating in Arabidopsis lipid mutants and in other plants, including 16:3 and 18:3 species. Therefore N deficiency in higher plants results in a co-ordinated breakdown of galactolipids and chlorophyll with deposition of specific fatty acid phytyl esters in thylakoids and plastoglobules of chloroplasts

    Plastid lipid droplets at the crossroads of prenylquinone metabolism

    Get PDF
    Lipid droplets called plastoglobules (PGs) exist in most plant tissues and plastid types. In chloroplasts, the polar lipid monolayer surrounding these low-density lipoprotein particles is continuous with the outer lipid leaflet of the thylakoid membrane. Often small clusters of two or three PGs, only one of them directly connected to thylakoids, are present. Structural proteins (known as plastid-lipid associated proteins/fibrillins or plastoglobulins) together with lipid metabolic enzymes coat the PGs. The hydrophobic core of PGs contains a range of neutral lipids including the prenylquinones [tocopherols (vitamin E), phylloquinone (vitamin K1), and plastoquinone (PQ-9)]. In this review the function of PGs and their associated enzymes in prenylquinone metabolism will be discusse

    GLUCAN SYNTHASE-LIKE8 and STEROL METHYLTRANSFERASE2 are required for ploidy consistency of the sexual reproduction system in Arabidopsis

    Get PDF
    In sexually reproducing plants, the meiocyte-producing archesporal cell lineage is maintained at the diploid state to consolidate the formation of haploid gametes. In search of molecular factors that regulate this ploidy consistency, we isolated an Arabidopsis thaliana mutant, called enlarged tetrad2 (et2), which produces tetraploid meiocytes through the stochastic occurrence of premeiotic endomitosis. Endomitotic polyploidization events were induced by alterations in cell wall formation, and similar cytokinetic defects were sporadically observed in other tissues, including cotyledons and leaves. ET2 encodes GLUCAN SYNTHASE-LIKE8 (GSL8), a callose synthase that mediates the deposition of callose at developing cell plates, root hairs, and plasmodesmata. Unlike other gsl8 mutants, in which defects in cell plate formation are seedling lethal, cytokinetic defects in et2 predominantly occur in flowers and have little effect on vegetative growth and development. Similarly, mutations in STEROL METHYLTRANSFERASE2 (SMT2), a major sterol biosynthesis enzyme, also lead to weak cytokinetic defects, primarily in the flowers. In addition, SMT2 allelic mutants also generate tetraploid meiocytes through the ectopic induction of premeiotic endomitosis. These observations demonstrate that appropriate callose and sterol biosynthesis are required for maintaining the ploidy level of the premeiotic germ lineage and that subtle defects in cytokinesis may lead to diploid gametes and polyploid offspring

    Synthesis and transfer of galactolipids in the chloroplast envelope membranes of \u3ci\u3eArabidopsis thaliana\u3c/i\u3e

    Get PDF
    Galactolipids [monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG)] are the hallmark lipids of photosynthetic membranes. The galactolipid synthases MGD1 and DGD1 catalyze consecutive galactosyltransfer reactions but localize to the inner and outer chloroplast envelopes, respectively, necessitating intermembrane lipid transfer. Here we show that the N-terminal sequence of DGD1 (NDGD1) is required for galactolipid transfer between the envelopes. Different diglycosyllipid synthases (DGD1, DGD2, and Chloroflexus glucosyltransferase) were introduced into the dgd1-1 mutant of Arabidopsis in fusion with N-terminal extensions (NDGD1 and NDGD2) targeting to the outer envelope. Reconstruction of DGDG synthesis in the outer envelope membrane was observed only with diglycosyllipid synthase fusion proteins carrying NDGD1, indicating that NDGD1 enables galactolipid translocation between envelopes. NDGD1 binds to phosphatidic acid (PA) in membranes and mediates PA-dependent membrane fusion in vitro. These findings provide a mechanism for the sorting and selective channeling of lipid precursors between the galactolipid pools of the two envelope membranes

    Dauthendey, Dörmann, Stramm: três poetas, três poemas

    Get PDF
    Tradução de: Augusto Rodrigues.Neste artigo será apresentada a tentativa de tradução de trêspoemas eróticos, cada um de um poeta de língua alemã do início do século XX, autores que são relativamente desconhecidos no Brasil e praticamente esquecidos na Alemanha, mesmo a despeito de sua representatividade dentro dos movimentos literários a que pertenceram
    corecore