1,702 research outputs found

    Phase Transitions in Confined Antiferromagnets

    Get PDF

    Performance Evaluation of an Integrated Optoelectronic Receiver

    Get PDF
    AbstractThis work describes the optical and electrical characterization of an integrated optoelectronic receiver. The receiver is composed of a photodiode and a transimpedance amplifier, both fabricated in silicon technology using a 0.8μm BiCMOS process. The total area occupied by the photodiode is of 10,000μm2. In a first step, the generated photocurrent of the photodiode is measured for the wavelengths of 780nm and 830nm at different levels of optical power. In a second step, the responsivity and quantum efficiency parameters of the photodiode are computed. Finally, an electrical measurement including the transimpedance amplifier is achieved. A potential application for this optoelectronic receiver is on the first optical communications window

    Confinement Effects in Antiferromagnets

    Full text link
    Phase equilibrium in confined Ising antiferromagnets was studied as a function of the coupling (v) and a magnetic field (h) at the surfaces, in the presence of an external field H. The ground state properties were calculated exactly for symmetric boundary conditions and nearest-neighbor interactions, and a full zero-temperature phase diagram in the plane v-h was obtained for films with symmetry-preserving surface orientations. The ground-state analysis was extended to the H-T plane using a cluster-variation free energy. The study of the finite-T properties (as a function of v and h) reveals the close interdependence between the surface and finite-size effects and, together with the ground-state phase diagram, provides an integral picture of the confinement in anisotropic antiferromagnets with surfaces that preserve the symmetry of the order parameter.Comment: 10 pages, 8 figures, Accepted in Phys. Rev.

    An effective virus-based gene silencing method for functional genomics studies in common bean

    Get PDF
    BACKGROUND: Common bean (Phaseolus vulgaris L.) is a crop of economic and nutritious importance in many parts of the world. The lack of genomic resources have impeded the advancement of common bean genomics and thereby crop improvement. Although concerted efforts from the "Phaseomics" consortium have resulted in the development of several genomic resources, functional studies have continued to lag due to the recalcitrance of this crop for genetic transformation. RESULTS: Here we describe the use of a bean pod mottle virus (BPMV)-based vector for silencing of endogenous genes in common bean as well as for protein expression. This BPMV-based vector was originally developed for use in soybean. It has been successfully employed for both protein expression and gene silencing in this species. We tested this vector for applications in common bean by targeting common bean genes encoding nodulin 22 and stearoyl-acyl carrier protein desaturase for silencing. Our results indicate that the BPMV vector can indeed be employed for reverse genetics studies of diverse biological processes in common bean. We also used the BPMV-based vector for expressing the green fluorescent protein (GFP) in common bean and demonstrate stable GFP expression in all common bean tissues where BPMV was detected. CONCLUSIONS: The availability of this vector is an important advance for the common bean research community not only because it provides a rapid means for functional studies in common bean, but also because it does so without generating genetically modified plants. Here we describe the detailed methodology and provide essential guidelines for the use of this vector for both gene silencing and protein expression in common bean. The entire VIGS procedure can be completed in 4-5 weeks

    Assessment of avocado textural changes during ripening by using contactless air-coupled ultrasound

    Full text link
    [EN] In the present study, the use of the air-coupled ultrasonic technique has been analysed as a new tool for the contactless assessment of the avocado post-harvest textural modifications during ripening. Thus, ultrasonic parameters, such as maximum wave amplitude and ultrasound velocity, and textural ones, such as hardness, elastic modulus and relaxation capacity, were measured on avocado slices. During ripening, avocado reduced its elastic modulus (from 2.29 +/- 0.75 to 0.16 +/- 0.08 MPa), became softer and became more viscoelastic, which was well described from zero and first-order kinetic models. These changes increased ultrasound attenuation, decreasing the maximum amplitude of the ultrasonic signal (from 336.6 to 55.4 V/m), while the ultrasonic velocity remained constant, between 320.1 +/- 6.9 and 316.4 +/- 82.6 m/s. Thereby, the maximum ultrasonic amplitude, which adequately correlated with textural parameters (r(avg) = 0.85), could be used to assess the post-harvest ripening on avocado slices.The authors acknowledge the financial support from the Ministerio de Economia y Competitividad (MINECO) and Agencia Estatal de InvestigaciOn in Spain (Project RTC-2017-6314-2) and the Generalitat Valenciana. M.D. Farifias is grateful to the European Social Fund (ESF 2014-2020) and Generalitat Valenciana for her post-doctoral fellowship (APOSTD/2018/203). The author E.A. Sanchez-Torres acknowledges the support of the undergraduate student Sara Serrano Garcia on the experimental work.Fernandez-Caballero-Fariñas, MD.; Sanchez-Torres, EA.; Sanchez-Jimenez, V.; Díaz, R.; Benedito Fort, JJ.; Garcia-Perez, J. (2021). Assessment of avocado textural changes during ripening by using contactless air-coupled ultrasound. Journal of Food Engineering. 289:1-9. https://doi.org/10.1016/j.jfoodeng.2020.1102661928

    Measurement method of optical properties of ex vivo biological tissues of rats in the near-infrared range

    Get PDF
    An optical fiber-based supercontinuum setup and a custom-made spectrophotometer that can measure spectra from 1100 to 2300 nm, are used to describe attenuation properties from different ex vivo rat tissues. Our method is able to differentiate between scattering and absorption coefficients in biological tissues. Theoretical assumptions combined with experimental measurements demonstrate that, in this infrared range, tissue attenuation and absorption can be accurately measured, and scattering can be described as the difference between both magnitudes. Attenuation, absorption, and scattering spectral coefficients of heart, brain, spleen, retina, and kidney are given by applying these theoretical and experimental methods. Light through these tissues is affected by high scattering, resulting in multiple absorption events, and longer wavelengths should be used to obtain lower attenuation values. It can be observed that the absorption coefficient has a similar behavior in the samples under study, with two main zones of absorption due to the water absorption bands at 1450 and 1950 nm, and with different absolute absorption values depending on the constituents of each tissue. The scattering coefficient can be determined, showing slight differences between retina and brain samples, and among heart, spleen and kidney tissues

    PVDF/BaTiO3/carbon nanotubes ternary nanocomposites prepared by ball milling: Piezo and dielectric responses

    Get PDF
    Nanocomposites based on poly(vinylidene fluoride) (PVDF) filled with barium titanate, BaTiO3, (BT) particles, and multiwalled carbon nanotubes (MWCNTs) were prepared by high-energy ball milling (HEBM) and subsequent hot pressing. This method of materials preparation allowed obtaining uniform dispersions of the nanofillers. The influence of the particles on the polymer structure and morphology was studied. To understand the origin of changes in the PVDF properties, thermal and electrical behaviors of the PVDF/BT/MWCNT nanocomposites were studied as a function of composition. The addition of BT, MWCNT, or its mixture had not any influence on the PVDF polymorphism. However, calorimetric results pointed out that the presence of the nanofillers exerted nucleation mainly ascribed to the surface to volume ratio of the nanoparticles. The capacitance of the composites increased as the nanofiller content increased, being the effect mainly dependent on the surface to volume ratio of the nanoparticles. The dielectric behavior of the materials as a function of frequency was modeled by a Debye equivalent circuit only below the percolation threshold respect to the amount of MWCNT. The piezoelectric behavior of the ternary nanocomposites was highly affected by the incorporation of the nanofillers only when high dielectric losses occurred above the percolation threshold.The authors gratefully acknowledge the financial support from the Ministerio de Ciencia e Innovacion (MAT2010-16815) and the Ministerio de Asuntos Exteriores y de Cooperacion and the Agencia Espanola de Cooperacion Internacional para el Desarrollo for supporting the Ph.D. thesis of F.A.S

    Relationship between Determinants of Health, Equity, and Dimensions of Health Literacy in Patients with Cardiovascular Disease

    Get PDF
    Background: Health literacy (HL) has been linked to empowerment, use of health services, and equity. Evaluating HL in people with cardiovascular health problems would facilitate the development of suitable health strategies care and reduce inequity. Aim: To investigate the relationship between different dimensions that make up HL and social determinants in patients with cardiovascular disease. Methods: Observational, descriptive, cross-sectional study in patients with cardiovascular disease, aged 50-85 years, accessing primary care services in Valencia (Spain) in 2018-2019. The Health Literacy Questionnaire was used. Results: 252 patients. Age was significantly related with the ability to participate with healthcare providers (p = 0.043), ability to find information (p = 0.022), and understanding information correctly to know what to do (p = 0.046). Level of education was significant for all HL dimensions. Patients without studies scored lower in all dimensions. The low- versus middle-class social relationship showed significant results in all dimensions. Conclusions: In patients with cardiovascular disease, level of education and social class were social determinants associated with HL scores. Whilst interventions at individual level might address some HL deficits, inequities in access to cardiovascular care and health outcomes would remain unjustly balanced unless structural determinants of HL are taken into account

    Imprints of galaxy evolution on H ii regions Memory of the past uncovered by the CALIFA survey

    Full text link
    H ii regions in galaxies are the sites of star formation and thus particular places to understand the build-up of stellar mass in the universe. The line ratios of this ionized gas are frequently used to characterize the ionization conditions. We use the Hii regions catalogue from the CALIFA survey (~5000 H ii regions), to explore their distribution across the classical [OIII]/Hbeta vs. [NII]/Halpha diagnostic diagram, and how it depends on the oxygen abundance, ionization parameter, electron density, and dust attenuation. We compared the line ratios with predictions from photoionization models. Finally, we explore the dependences on the properties of the host galaxies, the location within those galaxies and the properties of the underlying stellar population. We found that the location within the BPT diagrams is not totally predicted by photoionization models. Indeed, it depends on the properties of the host galaxies, their galactocentric distances and the properties of the underlying stellar population. These results indicate that although H ii regions are short lived events, they are affected by the total underlying stellar population. One may say that H ii regions keep a memory of the stellar evolution and chemical enrichment that have left an imprint on the both the ionizing stellar population and the ionized gasComment: 18 pages, 8 figures, accepted for publishing in A&
    corecore