117 research outputs found
The y activity from 11Li beta decay
The energies and absolute intensities of the γ-rays from the β-decay of 11Li are measured. There is no sizable β branch to the 11Be ground state. Only (5.2 ± 1.4) % of the β-decay strength does not lead to β-delayed particle emission. New β-delayed neutron branches to excited states of 10Be are observed and the total delayed neutron emission probability is deduced
Excited states of 19N and 21O
(18O, 19N) and (18O, 21O) nuclear reactions on a 18O target provide measurements of excited state energies at 1.12 and 1.59 MeV for 19N and at 1.35 and 3.00 MeV for 21O. The 19N mass is remeasured as 15.856 ± 0.050 MeV
Evidence of a new state in Be observed in the Li -decay
Coincidences between charged particles emitted in the -decay of
Li were observed using highly segmented detectors. The breakup channels
involving three particles were studied in full kinematics allowing for the
reconstruction of the excitation energy of the Be states participating
in the decay. In particular, the contribution of a previously unobserved state
at 16.3 MeV in Be has been identified selecting the +
He + He+n channel. The angular correlations between the
particle and the center of mass of the He+n system favors spin and
parity assignment of 3/2 for this state as well as for the previously known
state at 18 MeV.Comment: 13 pages, 6 figure
Proton drip-line nuclei in Relativistic Hartree-Bogoliubov theory
Ground-state properties of spherical even-even nuclei and
are described in the framework of Relativistic Hartree Bogoliubov
(RHB) theory. The model uses the NL3 effective interaction in the mean-field
Lagrangian, and describes pairing correlations by the pairing part of the
finite range Gogny interaction D1S. Binding energies, two-proton separation
energies, and proton radii that result from fully self-consistent RHB
solutions are compared with experimental data. The model predicts the location
of the proton drip-line. The isospin dependence of the effective spin-orbit
potential is discussed, as well as pairing properties that result from the
finite range interaction in the channel.Comment: 12 pages, RevTex, 10 p.s figures, submitted to Phys. Rev.
Nuclear structure and reaction studies at SPIRAL
The SPIRAL facility at GANIL, operational since 2001, is described briefly.
The diverse physics program using the re-accelerated (1.2 to 25 MeV/u) beams
ranging from He to Kr and the instrumentation specially developed for their
exploitation are presented. Results of these studies, using both direct and
compound processes, addressing various questions related to the existence of
exotic states of nuclear matter, evolution of new "magic numbers", tunnelling
of exotic nuclei, neutron correlations, exotic pathways in astrophysical sites
and characterization of the continuum are discussed. The future prospects for
the facility and the path towards SPIRAL2, a next generation ISOL facility, are
also briefly presented.Comment: 48 pages, 27 figures. Accepted for publication in Journal of Physics
An Experimental Area for Short Baseline Neutrino Physics on the CERN Neutrino Beam to Gran Sasso
A new neutrino beam line from the CERN SPS to the Gran Sasso laboratory in Italy is presently under study. The new neutrino beam will allow both long baseline and short baseline neutrino oscillation experiments to be performed. This report presents a conceptual design of the short baseline experimental area to be located at a distance of 1858 m from the neutrino target
Proton drip-line nuclei in relativistic mean-field theory
The position of the two-proton drip line has been calculated for even-even
nuclei with in the framework of the relativistic mean-field
(RMF) theory. The current model uses the NL3 effective interaction in the
mean-field Lagrangian and describes pairing correlations in the
Bardeen-Cooper-Schrieffer (BCS) formalism. The predictions of the RMF theory
are compared with those of the Hartree-Fock+BCS approach (with effective force
Skyrme SIII) and the finite-range droplet model (FRDM) and with the available
experimental information.Comment: 18 pages, RevTeX, 2 p.s figures, to appear in Phys. Rev.
The detection of neutron clusters
A new approach to the production and detection of bound neutron clusters is
presented. The technique is based on the breakup of beams of very neutron-rich
nuclei and the subsequent detection of the recoiling proton in a liquid
scintillator. The method has been tested in the breakup of 11Li, 14Be and 15B
beams by a C target. Some 6 events were observed that exhibit the
characteristics of a multineutron cluster liberated in the breakup of 14Be,
most probably in the channel 10Be+4n. The various backgrounds that may mimic
such a signal are discussed in detail.Comment: 11 pages, 12 figures, LPCC 01-1
- …