30,344 research outputs found

    Interface Fluctuations, Burgers Equations, and Coarsening under Shear

    Full text link
    We consider the interplay of thermal fluctuations and shear on the surface of the domains in various systems coarsening under an imposed shear flow. These include systems with nonconserved and conserved dynamics, and a conserved order parameter advected by a fluid whose velocity field satisfies the Navier-Stokes equation. In each case the equation of motion for the interface height reduces to an anisotropic Burgers equation. The scaling exponents that describe the growth and coarsening of the interface are calculated exactly in any dimension in the case of conserved and nonconserved dynamics. For a fluid-advected conserved order parameter we determine the exponents, but we are unable to build a consistent perturbative expansion to support their validity.Comment: 10 RevTeX pages, 2 eps figure

    Gαq and its \u3ci\u3eAkt\u3c/i\u3eions

    Get PDF
    No abstract available

    Evolution and Modern Approaches for Thermal Analysis of Electrical Machines

    Get PDF
    In this paper, the authors present an extended survey on the evolution and the modern approaches in the thermal analysis of electrical machines. The improvements and the new techniques proposed in the last decade are analyzed in depth and compared in order to highlight the qualities and defects of each. In particular, thermal analysis based on lumped-parameter thermal network, finite-element analysis, and computational fluid dynamics are considered in this paper. In addition, an overview of the problems linked to the thermal parameter determination and computation is proposed and discussed. Taking into account the aims of this paper, a detailed list of books and papers is reported in the references to help researchers interested in these topics

    Dynamical excitonic effects in metals and semiconductors

    Full text link
    The dynamics of an electron--hole pair induced by the time--dependent screened Coulomb interaction is discussed. In contrast to the case where the static electron--hole interaction is considered we demonstrate the occurrence of important dynamical excitonic effects in the solution of the Bethe--Salpeter equation.This is illustrated in the calculated absorption spectra of noble metals (copper and silver) and silicon. Dynamical corrections strongly affect the spectra, partially canceling dynamical self--energy effects and leading to good agreement with experiment.Comment: Accepted for publication on Phys. Rev. Let

    Nanoscale Electrostatic Control of Oxide Interfaces

    Full text link
    We develop a robust and versatile platform to define nanostructures at oxide interfaces via patterned top gates. Using LaAlO3_3/SrTiO3_3 as a model system, we demonstrate controllable electrostatic confinement of electrons to nanoscale regions in the conducting interface. The excellent gate response, ultra-low leakage currents, and long term stability of these gates allow us to perform a variety of studies in different device geometries from room temperature down to 50 mK. Using a split-gate device we demonstrate the formation of a narrow conducting channel whose width can be controllably reduced via the application of appropriate gate voltages. We also show that a single narrow gate can be used to induce locally a superconducting to insulating transition. Furthermore, in the superconducting regime we see indications of a gate-voltage controlled Josephson effect.Comment: Version after peer review; includes additional data on superconductivit

    Young Binary Stars and Associated Disks

    Get PDF
    The typical product of the star formation process is a binary star. Binaries have provided the first dynamical measures of the masses of pre-main-sequence (PMS) stars, providing support for the calibrations of PMS evolutionary tracks. Surprisingly, in some star-forming regions PMS binary frequencies are higher than among main-sequence solar-type stars. The difference in PMS and main-sequence binary frequencies is apparently not an evolutionary effect; recent attention has focussed on correlations between binary frequency and stellar density or cloud temperatures. Accretion disks are common among young binary stars. Binaries with separations between 1 AU and 100 AU have substantially less submillimeter emission than closer or wider binaries, suggesting that they have truncated their disks. Evidence of dynamical clearing has been seen in several binaries. Remarkably, PMS binaries of all separations show evidence of circumstellar disks and continued accretion. This suggests that the circumstellar disks are replenished from circumbinary disks or envelopes. The frequent presence of disks suggests that planet formation can occur in binary environments, and formation of planets in wide binaries is already established by their discovery. Circumbinary disk masses around very short period binaries are ample to form planetary systems such as our own. The nature of planetary systems among the most common binaries, with separations between 10 AU and 100 AU, is less clear given the observed reduction in disk mass, though they may have disk masses adequate for the formation of terrestrial-like planets.Comment: 32 pages, including 6 Postscript figures (TeX, uses psfig.sty); to appear in "Protostars & Planets IV". Gif figures with captions and high-res Postscript color figure available at http://hven.swarthmore.edu/~jensen/preprints/ppiv.htm

    Response of human engineered cartilage based on articular or nasal chondrocytes to interleukin-1? and low oxygen

    Get PDF
    Previous studies showed that human nasal chondrocytes (HNC) exhibit higher proliferation and chondrogenic capacity as compared to human articular chondrocytes (HAC). To consider HNC as a relevant alternative cell source for the repair of articular cartilage defects it is necessary to test how these cells react when exposed to environmental factors typical of an injured joint. We thus aimed this study at investigating the responses of HNC and HAC to exposure to interleukin (IL)-1? and low oxygen. For this purpose HAC and HNC harvested from the same donors (N=5) were expanded in vitro and then cultured in pellets or collagen-based scaffolds at standard (19%) or low oxygen (5%) conditions. Resulting tissues were analyzed after a short (3 days) exposure to IL-1?, mimicking the initially inflammatory implantation site, or following a recovery time (1 or 2 weeks for pellets and scaffolds, respectively). After IL-1? treatment, constructs generated by both HAC and HNC displayed a transient loss of GAG (up to 21.8% and 36.8%, respectively) and, consistently, an increased production of metalloproteases (MMP)-1 and -13. Collagen type II and the cryptic fragment of aggrecan (DIPEN), both evaluated immunohistochemically, displayed a trend consistent with GAG and MMPs production. HNC-based constructs exhibited a more efficient recovery upon IL-1? withdrawal, resulting in a higher accumulation of GAG (up to 2.6-fold) compared to the corresponding HAC-based tissues. On the other hand, HAC displayed a positive response to low oxygen culture, while HNC were only slightly affected by oxygen percentage. Collectively, under the conditions tested mimicking the postsurgery articular environment, HNC retained a tissue-forming capacity, similar or even better than HAC. These results represent a step forward in validating HNC as a cell source for cartilage tissue engineering strategies

    Relation between spectral changes and the presence of the lower kHz QPO in the neutron-star low-mass X-ray binary 4U 1636-53

    Get PDF
    We fitted the 31803-180-keV spectrum of all the observations of the neutron-star low-mass X-ray binary 4U 1636-53 taken with the {\it Rossi X-ray Timing Explorer} using a model that includes a thermal Comptonisation component. We found that in the low-hard state the power-law index of this component, Γ\Gamma, gradually increases as the source moves in the colour-colour diagram. When the source undergoes a transition from the hard to the soft state Γ\Gamma drops abruptly; once the source is in the soft state Γ\Gamma increases again and then decreases gradually as the source spectrum softens further. The changes in Γ\Gamma, together with changes of the electron temperature, reflect changes of the optical depth in the corona. The lower kilohertz quasi-periodic oscillation (kHz QPO) in this source appears only in observations during the transition from the hard to the soft state, when the optical depth of the corona is high and changes depends strongly upon the position of the source in the colour-colour diagram. Our results are consistent with a scenario in which the lower kHz QPO reflects a global mode in the system that results from the resonance between, the disc and/or the neutron-star surface, and the Comptonising corona.Comment: 9 pages, 6 figures. Accepted for publication in MNRA

    Directed percolation with incubation times

    Full text link
    We introduce a model for directed percolation with a long-range temporal diffusion, while the spatial diffusion is kept short ranged. In an interpretation of directed percolation as an epidemic process, this non-Markovian modification can be understood as incubation times, which are distributed accordingly to a Levy distribution. We argue that the best approach to find the effective action for this problem is through a generalization of the Cardy-Sugar method, adding the non-Markovian features into the geometrical properties of the lattice. We formulate a field theory for this problem and renormalize it up to one loop in a perturbative expansion. We solve the various technical difficulties that the integrations possess by means of an asymptotic analysis of the divergences. We show the absence of field renormalization at one-loop order, and we argue that this would be the case to all orders in perturbation theory. Consequently, in addition to the characteristic scaling relations of directed percolation, we find a scaling relation valid for the critical exponents of this theory. In this universality class, the critical exponents vary continuously with the Levy parameter.Comment: 17 pages, 7 figures. v.2: minor correction

    New analytic solutions of the collective Bohr hamiltonian for a beta-soft, gamma-soft axial rotor

    Full text link
    New analytic solutions of the quadrupole collective Bohr hamiltonian are proposed, exploiting an approximate separation of the beta and gamma variables to describe gamma-soft prolate axial rotors. The model potential is a sum of two terms: a beta-dependent term taken either with a Coulomb-like or a Kratzer-like form, and a gamma-dependent term taken as an harmonic oscillator. In particular it is possible to give a one parameter paradigm for a beta-soft, gamma-soft axial rotor that can be applied, with a considerable agreement, to the spectrum of 234U.Comment: (Dipartimento di Fisica ``G.Galilei'' and INFN, via Marzolo 8, I-35131 Padova, Italy) 10 pages, 3 figure
    corecore