77 research outputs found

    Seasonal Migration of Sika Deer in the Oku-Chichibu Mountains, Central Japan

    Get PDF
    Movements and seasonal home ranges of 6 GPS collared sika deer were investigated at the Oku-Chichibu Mountains, central Honshu, from April 2009 to March 2010. All deer migrated between discrete summer and winter home ranges. The linear migration distance ranged from 2.5 to 31.9 km. Mean elevation during the summer and the winter ranged from 980 to 1,782 m, and from 1,204 to 1,723 m, respectively. Two deer were upward migrants and 4 deer were downward migrants. Taking into consideration of the relatively small snow accumulation in the summer home range, the possibility of autumn migration to avoid deep snow is low. The percentage of steep slope in the winter home range was higher than that in the summer. Bamboo grass was not found in the summer home range, but was predominant in the winter home range. Road density decreased in the winter home range compared to the summer. Only 2 out of 6 deer stayed mainly in the wildlife protection area during the winter. Our results indicate that the autumn migration was affected by winter forage and human disturbance, thereby assured the survival of the deer during winter.ArticleMAMMAL STUDY. 37(2):127-137 (2012)journal articl

    Recording fine‐scale movement of ground beetles by two methods: Potentials and methodological pitfalls

    Get PDF
    Movement trajectories are usually recorded as a sequence of discrete movement events described by two parameters: step length (distance) and turning angle (bearing). One of the most widespread methods to record the geocoordinates of each step is by a GPS device. Such devices have limited suitability for recording fine movements of species with low dispersal ability including flightless carabid beetles at small spatio‐temporal scales. As an alternative, the distance‐bearing approach can avoid the measurement error of GPS units since it uses directly measured distances and compass azimuths. As no quantification of measurement error between distance‐bearing and GPS approaches exists so far, we generated artificial fine‐scale trajectories and in addition radio‐tracked living carabids in a temperate forest and recorded each movement step by both methods. Trajectories obtained from distance‐bearing were compared to those obtained by a GPS device in terms of movement parameters. Consequently, both types of trajectories were segmented by state‐switching modeling into two distinct movement stages typical for carabids: random walk and directed movement. We found that the measurement error of GPS compared to distance‐bearing was 1.878 m (SEM = 0.181 m) for distances and 31.330° (SEM = 2.066°) for bearings. Moreover, these errors increased under dense forest canopy and rainy weather. Distance error did not change with increasing distance recorded by distance‐bearing but bearings were significantly more sensitive to error at short distances. State‐switching models showed only slight, not significant, differences in movement states between the two methods in favor of the random walk in the distance‐bearing approach. However, the shape of the GPS‐measured trajectories considerably differed from those recorded by distance‐bearing caused especially by bearing error at short distances. Our study showed that distance‐bearing could be more appropriate for recording movement steps not only of ground‐dwelling beetles but also other small animals at fine spatio‐temporal scales

    Movement patterns of forest elephants (Loxodonta cyclotis Matschie, 1900) in the Odzala-Kokoua National Park, Republic of Congo

    Full text link
    [Otros] Les éléphants de forêt d'Afrique (Loxodonta cyclotis Matschie, 1900) sont des ingénieurs en écologie qui jouent un rôle fondamental dans la dynamique de la végétation. L'espèce constitue une préoccupation immédiate pour la conservation, mais elle est relativement peu étudiée. Pour combler cette lacune de connaissances, nous avons étudié les facteurs de déplacements quotidiens (déplacements linéaires) des éléphants de forêt ¿ caractérisés par un ensemble de variables géographiques, météorologiques et anthropiques ¿ dans le Parc National d'Odzala¿Kokoua, en République du Congo. Concrètement, nous avons utilisé la forêt d'arbres décisionnels pour modéliser et démêler les principaux facteurs environnementaux régissant les déplacements de six éléphants de forêt, équipés de colliers GPS et suivis pendant 16 mois. Les résultats ont montré que les femelles se déplaçaient plus loin que les mâles, tandis que la présence de routes ou d¿établissements humains perturbait le comportement des éléphants, ce qui accélérait les déplacements. Les éléphants de forêt se déplaçaient plus rapidement dans les cours d¿eau et dans les forêts dont le sous¿bois était dominé par les forêts de Marantaceae et les bais, mais se déplaçait plus lentement dans les savanes. Enfin, les zones inondables ¿ characterisées par l¿altitude et les précipitations accumulées ¿ et les températures plus élevées empêchaient des déplacements plus longs. Nous espérons que ces résultats amélioreront les connaissances sur les mouvements des espèces à travers différents habitats, ce qui serait bénéfique pour la gestion de leur conservation.[EN] African forest elephants (Loxodonta cyclotis Matschie, 1900) are ecological engineers that play a fundamental role in vegetation dynamics. The species is of immediate conservation concern, yet it is relatively understudied. To narrow this knowledge gap, we studied the drivers of daily movement patterns (linear displacements) of forest elephants¿characterised by a set of geographical, meteorological and anthropogenic variables¿in the Odzala¿Kokoua National Park, Republic of Congo. Explicitly, we used conditional random forest to model and disentangle the main environmental factors governing the displacements of six forest elephants,fitted with GPS collars and tracked over 16 months. Results indicated that females moved further distances than males, while the presence of roads or human settlements disrupted elephant behaviour resulting in faster displacements. Forest elephants moved faster along watercourses and through forest with understory dominated by Marantaceae forests and bais, but moved slower in savannahs. Finally, flood¿prone areas¿described by elevation and accumulated precipitation¿and higher temperatures prevented longer displacements. We expect these results to improve the knowledge on the species movements through different habitats, which would benefit its conservation management.The fieldwork was financed by African Parks. We are grateful to the Congolese wildlife authorities (Ministère de l'Économie Forestière et de l'Environnement) for the permission to carry out this study, and we are deeply indebted to the director of the OKNP and to the conservation, wildlife monitoring and research manager, Erik Marav, respectively, for their continued support during our study. We are particularly grateful to Dr. Mike Kock, veterinarian, for collaring the elephants and to the field tracking team. We are also grateful to Séan Cahill for the useful comments and English correction that helped improve this manuscript. The authors of the present study certify that they have no affiliations with or involvement in any organisation or entity with any financial or nonfinancial interest in the subject matter or materials discussed in this manuscript.Molina-Vacas, G.; Muñoz-Mas, R.; Martinez-Capel, F.; Rodriguez-Teijeiro, JD.; Le Fohlic, G. (2019). Movement patterns of forest elephants (Loxodonta cyclotis Matschie, 1900) in the Odzala-Kokoua National Park, Republic of Congo. African Journal of Ecology. 58:23-33. https://doi.org/10.1111/aje.12695S233358Arlot, S., & Celisse, A. (2010). A survey of cross-validation procedures for model selection. Statistics Surveys, 4(0), 40-79. doi:10.1214/09-ss054Bermejo, M. (1999). Status and conservation of primates in Odzala National Park, Republic of the Congo. Oryx, 33(4), 323-331. doi:10.1046/j.1365-3008.1999.00081.xBirkett, P. J., Vanak, A. T., Muggeo, V. M. R., Ferreira, S. M., & Slotow, R. (2012). Animal Perception of Seasonal Thresholds: Changes in Elephant Movement in Relation to Rainfall Patterns. PLoS ONE, 7(6), e38363. doi:10.1371/journal.pone.0038363Blake, S., Deem, S. L., Strindberg, S., Maisels, F., Momont, L., Isia, I.-B., … Kock, M. D. (2008). Roadless Wilderness Area Determines Forest Elephant Movements in the Congo Basin. PLoS ONE, 3(10), e3546. doi:10.1371/journal.pone.0003546Blake, S., Douglas-Hamilton, I., & Karesh, W. B. (2001). GPS telemetry of forest elephants in Central Africa: results of a preliminary study. African Journal of Ecology, 39(2), 178-186. doi:10.1046/j.1365-2028.2001.00296.xBlake, S., Strindberg, S., Boudjan, P., Makombo, C., Bila-Isia, I., Ilambu, O., … Maisels, F. (2007). Forest Elephant Crisis in the Congo Basin. PLoS Biology, 5(4), e111. doi:10.1371/journal.pbio.0050111Bohrer, G., Beck, P. S., Ngene, S. M., Skidmore, A. K., & Douglas-Hamilton, I. (2014). Elephant movement closely tracks precipitation-driven vegetation dynamics in a Kenyan forest-savanna landscape. Movement Ecology, 2(1). doi:10.1186/2051-3933-2-2Breiman, L. (2001). Machine Learning, 45(1), 5-32. doi:10.1023/a:1010933404324Breuer, T., Maisels, F., & Fishlock, V. (2016). The consequences of poaching and anthropogenic change for forest elephants. Conservation Biology, 30(5), 1019-1026. doi:10.1111/cobi.12679Buij, R., McShea, W. J., Campbell, P., Lee, M. E., Dallmeier, F., Guimondou, S., … Alonso, A. (2007). Patch-occupancy models indicate human activity as major determinant of forest elephant Loxodonta cyclotis seasonal distribution in an industrial corridor in Gabon. Biological Conservation, 135(2), 189-201. doi:10.1016/j.biocon.2006.10.028CLARK, C. J., POULSEN, J. R., MALONGA, R., & ELKAN, Jr., P. W. (2009). Logging Concessions Can Extend the Conservation Estate for Central African Tropical Forests. Conservation Biology, 23(5), 1281-1293. doi:10.1111/j.1523-1739.2009.01243.xCrooks, K. R., Burdett, C. L., Theobald, D. M., King, S. R. B., Di Marco, M., Rondinini, C., & Boitani, L. (2017). Quantification of habitat fragmentation reveals extinction risk in terrestrial mammals. Proceedings of the National Academy of Sciences, 114(29), 7635-7640. doi:10.1073/pnas.1705769114De Beer, Y., & van Aarde, R. J. (2008). Do landscape heterogeneity and water distribution explain aspects of elephant home range in southern Africa’s arid savannas? Journal of Arid Environments, 72(11), 2017-2025. doi:10.1016/j.jaridenv.2008.07.002De Knegt, H. J., van Langevelde, F., Skidmore, A. K., Delsink, A., Slotow, R., Henley, S., … Prins, H. H. T. (2010). The spatial scaling of habitat selection by African elephants. Journal of Animal Ecology, 80(1), 270-281. doi:10.1111/j.1365-2656.2010.01764.xDi Marco, M., Buchanan, G. M., Szantoi, Z., Holmgren, M., Grottolo Marasini, G., Gross, D., … Rondinini, C. (2014). Drivers of extinction risk in African mammals: the interplay of distribution state, human pressure, conservation response and species biology. Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1643), 20130198. doi:10.1098/rstb.2013.0198Vladimir, D., & Jon, H. (2018). Mammalwatching: A new source of support for science and conservation. International Journal of Biodiversity and Conservation, 10(4), 154-160. doi:10.5897/ijbc2017.1162Elliot, N. B., Cushman, S. A., Loveridge, A. J., Mtare, G., & Macdonald, D. W. (2014). Movements vary according to dispersal stage, group size, and rainfall: the case of the African lion. Ecology, 95(10), 2860-2869. doi:10.1890/13-1793.1Fishlock, V., & Lee, P. C. (2013). Forest elephants: fission–fusion and social arenas. Animal Behaviour, 85(2), 357-363. doi:10.1016/j.anbehav.2012.11.004Friedman, J. H. (2001). machine. The Annals of Statistics, 29(5), 1189-1232. doi:10.1214/aos/1013203451GOBUSH, K. S., MUTAYOBA, B. M., & WASSER, S. K. (2008). Long-Term Impacts of Poaching on Relatedness, Stress Physiology, and Reproductive Output of Adult Female African Elephants. Conservation Biology, 22(6), 1590-1599. doi:10.1111/j.1523-1739.2008.01035.xGoldenberg, S. Z., Douglas-Hamilton, I., Daballen, D., & Wittemyer, G. (2016). Challenges of using behavior to monitor anthropogenic impacts on wildlife: a case study on illegal killing of African elephants. Animal Conservation, 20(3), 215-224. doi:10.1111/acv.12309Goldenberg, S. Z., Douglas-Hamilton, I., & Wittemyer, G. (2018). Inter-generational change in African elephant range use is associated with poaching risk, primary productivity and adult mortality. Proceedings of the Royal Society B: Biological Sciences, 285(1879), 20180286. doi:10.1098/rspb.2018.0286Gonzalez-Voyer, A., González-Suárez, M., Vilà, C., & Revilla, E. (2016). Larger brain size indirectly increases vulnerability to extinction in mammals. Evolution, 70(6), 1364-1375. doi:10.1111/evo.12943Graham, M. D., Douglas-Hamilton, I., Adams, W. M., & Lee, P. C. (2009). The movement of African elephants in a human-dominated land-use mosaic. Animal Conservation, 12(5), 445-455. doi:10.1111/j.1469-1795.2009.00272.xHarris, G., Thirgood, S., Hopcraft, J., Cromsight, J., & Berger, J. (2009). Global decline in aggregated migrations of large terrestrial mammals. Endangered Species Research, 7, 55-76. doi:10.3354/esr00173Hothorn, T., Hornik, K., & Zeileis, A. (2006). Unbiased Recursive Partitioning: A Conditional Inference Framework. Journal of Computational and Graphical Statistics, 15(3), 651-674. doi:10.1198/106186006x133933Johnson, D. D. P., Kays, R., Blackwell, P. G., & Macdonald, D. W. (2002). Does the resource dispersion hypothesis explain group living? Trends in Ecology & Evolution, 17(12), 563-570. doi:10.1016/s0169-5347(02)02619-8Kolowski, J. M., Blake, S., Kock, M. D., Lee, M. E., Henderson, A., Honorez, A., & Alonso, A. (2010). Movements of four forest elephants in an oil concession in Gabon, Central Africa. African Journal of Ecology, 48(4), 1134-1138. doi:10.1111/j.1365-2028.2009.01204.xLAURANCE, W. F., CROES, B. M., TCHIGNOUMBA, L., LAHM, S. A., ALONSO, A., LEE, M. E., … ONDZEANO, C. (2006). Impacts of Roads and Hunting on Central African Rainforest Mammals. Conservation Biology, 20(4), 1251-1261. doi:10.1111/j.1523-1739.2006.00420.xLoarie, S. R., Aarde, R. J. V., & Pimm, S. L. (2009). Fences and artificial water affect African savannah elephant movement patterns. Biological Conservation, 142(12), 3086-3098. doi:10.1016/j.biocon.2009.08.008Maisels, F., Strindberg, S., Blake, S., Wittemyer, G., Hart, J., Williamson, E. A., … Amsini, F. (2013). Devastating Decline of Forest Elephants in Central Africa. PLoS ONE, 8(3), e59469. doi:10.1371/journal.pone.0059469May, R., Dandy, G., & Maier, H. (2011). Review of Input Variable Selection Methods for Artificial Neural Networks. Artificial Neural Networks - Methodological Advances and Biomedical Applications. doi:10.5772/16004Metsio Sienne, J., Buchwald, R., & Wittemyer, G. (2013). Differentiation in mineral constituents in elephant selected versus unselected water and soil resources at Central African bais (forest clearings). European Journal of Wildlife Research, 60(2), 377-382. doi:10.1007/s10344-013-0781-0Mills, E. C., Poulsen, J. R., Fay, J. M., Morkel, P., Clark, C. J., Meier, A., … White, L. J. T. (2018). Forest elephant movement and habitat use in a tropical forest-grassland mosaic in Gabon. PLOS ONE, 13(7), e0199387. doi:10.1371/journal.pone.0199387Muñoz-Mas, R., Fukuda, S., Pórtoles, J., & Martínez-Capel, F. (2018). Revisiting probabilistic neural networks: a comparative study with support vector machines and the microhabitat suitability for the Eastern Iberian chub (Squalius valentinus). Ecological Informatics, 43, 24-37. doi:10.1016/j.ecoinf.2017.10.008Muñoz-Mas, R., Fukuda, S., Vezza, P., & Martínez-Capel, F. (2016). Comparing four methods for decision-tree induction: A case study on the invasive Iberian gudgeon ( Gobio lozanoi ; Doadrio and Madeira, 2004). Ecological Informatics, 34, 22-34. doi:10.1016/j.ecoinf.2016.04.011Poulsen, J. R., Koerner, S. E., Moore, S., Medjibe, V. P., Blake, S., Clark, C. J., … White, L. J. T. (2017). Poaching empties critical Central African wilderness of forest elephants. Current Biology, 27(4), R134-R135. doi:10.1016/j.cub.2017.01.023Poulsen, J. R., Rosin, C., Meier, A., Mills, E., Nuñez, C. L., Koerner, S. E., … Sowers, M. (2018). Ecological consequences of forest elephant declines for Afrotropical forests. Conservation Biology, 32(3), 559-567. doi:10.1111/cobi.13035Ripple, W. J., Abernethy, K., Betts, M. G., Chapron, G., Dirzo, R., Galetti, M., … Young, H. (2016). Bushmeat hunting and extinction risk to the world’s mammals. Royal Society Open Science, 3(10), 160498. doi:10.1098/rsos.160498Sánchez‐Montoya, M. M., Moleón, M., Sánchez‐Zapata, J. A., & Tockner, K. (2016). Dry riverbeds: corridors for terrestrial vertebrates. Ecosphere, 7(10). doi:10.1002/ecs2.1508Schuttler, S. G., Blake, S., & Eggert, L. S. (2012). Movement Patterns and Spatial Relationships Among African Forest Elephants. Biotropica, 44(4), 445-448. doi:10.1111/j.1744-7429.2012.00889.xSHORT, J. C. (1983). Density and seasonal movements of forest elephant (Loxodonta africana cyclotis, Matschie) in Bia National Park, Ghana. African Journal of Ecology, 21(3), 175-184. doi:10.1111/j.1365-2028.1983.tb01179.xSnyman, S. L. (2012). The role of tourism employment in poverty reduction and community perceptions of conservation and tourism in southern Africa. Journal of Sustainable Tourism, 20(3), 395-416. doi:10.1080/09669582.2012.657202Stokes, E. J., Strindberg, S., Bakabana, P. C., Elkan, P. W., Iyenguet, F. C., Madzoké, B., … Rainey, H. J. (2010). Monitoring Great Ape and Elephant Abundance at Large Spatial Scales: Measuring Effectiveness of a Conservation Landscape. PLoS ONE, 5(4), e10294. doi:10.1371/journal.pone.0010294Strobl, C., Boulesteix, A.-L., Zeileis, A., & Hothorn, T. (2007). Bias in random forest variable importance measures: Illustrations, sources and a solution. BMC Bioinformatics, 8(1). doi:10.1186/1471-2105-8-25Strobl, C., Hothorn, T., & Zeileis, A. (2009). Party on! The R Journal, 1(2), 14. doi:10.32614/rj-2009-013Turkalo, A. K. (2013). Estimating forest elephant age. African Journal of Ecology, 51(3), 501-505. doi:10.1111/aje.12087Turkalo, A. K., Wrege, P. H., & Wittemyer, G. (2013). Long-Term Monitoring of Dzanga Bai Forest Elephants: Forest Clearing Use Patterns. PLoS ONE, 8(12), e85154. doi:10.1371/journal.pone.0085154Wasser, S. K., Brown, L., Mailand, C., Mondol, S., Clark, W., Laurie, C., & Weir, B. S. (2015). Genetic assignment of large seizures of elephant ivory reveals Africa’s major poaching hotspots. Science, 349(6243), 84-87. doi:10.1126/science.aaa2457WILLIAMS, T. M. (1990). Heat transfer in elephants: thermal partitioning based on skin temperature profiles. Journal of Zoology, 222(2), 235-245. doi:10.1111/j.1469-7998.1990.tb05674.xWittemyer, G., Northrup, J. M., Blanc, J., Douglas-Hamilton, I., Omondi, P., & Burnham, K. P. (2014). Illegal killing for ivory drives global decline in African elephants. Proceedings of the National Academy of Sciences, 111(36), 13117-13121. doi:10.1073/pnas.1403984111WREGE, P. H., ROWLAND, E. D., THOMPSON, B. G., & BATRUCH, N. (2010). Use of Acoustic Tools to Reveal Otherwise Cryptic Responses of Forest Elephants to Oil Exploration. Conservation Biology, 24(6), 1578-1585. doi:10.1111/j.1523-1739.2010.01559.xYoung, K. D., Ferreira, S. M., & Van Aarde, R. J. (2009). Elephant spatial use in wet and dry savannas of southern Africa. Journal of Zoology, 278(3), 189-205. doi:10.1111/j.1469-7998.2009.00568.

    To determine the level of satisfaction among medical students of a public sector medical university regarding their academic activities

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>An ongoing evaluation system is essential to determine if the academic system in place has worked to produce a better product, hence the objective of our study was to evaluate the satisfaction level among medical students regarding their academic teaching and assessment method and what measures will they suggest for the future to rectify the current situation.</p> <p>This questionnaire based cross sectional study was conducted in a public sector medical university from February to July 2010. A well structured questionnaire was administered to a random sample of 375 final year medical students. However 292 of the students provided informed consent and filled in the questionnaire which included their demographic profile as well as questions in line with the study objective. Data was entered in a Statistical Package for Social Sciences (SPSS version.16) and analyzed using descriptive statistics.</p> <p>Findings</p> <p>The male to female ratio in our study was 1:2. Most of the students (57.2%) were dissatisfied with the quality of teaching in the university. Fifty-seven percent of the participants believed that the current standard of their institute were not at par with those of international medical universities. BCQ's were the mode of examination questions preferred by the majority of the students. Most of the students (66.1%) wanted the university to conduct career planning seminars to help them plan their career.</p> <p>Conclusions</p> <p>These results suggest that the students of public sector medical universities are unsatisfied from current academic facilities and teaching activities. Students recommend increased emphasis on better lectures and practical training as well as a need to incorporate career planning sessions for the students to help plan them their future career paths.</p

    Home range and habitat data for Hispaniolan mammals challenge assumptions for conservation management

    Get PDF
    Conservation decision-making for threatened species in human-modified landscapes requires detailed knowledge about spatial ecology, but robust data derived from tracking individual animals are often unavailable, with management decisions potentially based on unreliable anecdotal data. Existing data are limited for Hispaniola's two threatened non-volant land mammals, the Hispaniolan hutia (Plagiodontia aedium) and Hispaniolan solenodon (Solenodon paradoxus), with assumptions that hutias are better able to tolerate landscape disturbance. We collected spatial behaviour and habitat use data for Hispaniolan mammals during a multi-year field programme across undisturbed and modified habitats in southwestern Dominican Republic, using GPS units for hutias (11 individuals) and radio-telemetry for solenodons (22 individuals). Although significant differences exist in hutia home range estimates between different GPS error derivation strategies and estimated terrestrial/arboreal behaviour scenarios (95% KDE means = 23,582–28,612 m2), hutias almost exclusively use forest under all estimates (mean observations in forest across all strategies/scenarios = 90.3%, total range = 69.1–100%). Solenodons have larger estimated home ranges (95% KDE mean = 156,700 m2), with differences between wet and dry season estimates, and show much more variation in habitat use than hutias within the same landscape; animals regularly use both forested and modified habitats, being observed most frequently in forest (mean = 74.0%, range = 13.0–99.1%) but also occurring regularly in pasture (mean = 15.9%, range = 0–80.0%) and cropland (mean = 7.7%, range = 0–62.0%), and den in all three habitats. This new baseline on Hispaniolan mammal spatial ecology challenges anecdotal data, and suggests solenodons may be better able to tolerate disturbance and persist in modified landscapes

    Can forest management based on natural disturbances maintain ecological resilience?

    Get PDF
    Given the increasingly global stresses on forests, many ecologists argue that managers must maintain ecological resilience: the capacity of ecosystems to absorb disturbances without undergoing fundamental change. In this review we ask: Can the emerging paradigm of natural-disturbance-based management (NDBM) maintain ecological resilience in managed forests? Applying resilience theory requires careful articulation of the ecosystem state under consideration, the disturbances and stresses that affect the persistence of possible alternative states, and the spatial and temporal scales of management relevance. Implementing NDBM while maintaining resilience means recognizing that (i) biodiversity is important for long-term ecosystem persistence, (ii) natural disturbances play a critical role as a generator of structural and compositional heterogeneity at multiple scales, and (iii) traditional management tends to produce forests more homogeneous than those disturbed naturally and increases the likelihood of unexpected catastrophic change by constraining variation of key environmental processes. NDBM may maintain resilience if silvicultural strategies retain the structures and processes that perpetuate desired states while reducing those that enhance resilience of undesirable states. Such strategies require an understanding of harvesting impacts on slow ecosystem processes, such as seed-bank or nutrient dynamics, which in the long term can lead to ecological surprises by altering the forest's capacity to reorganize after disturbance

    A Low-Cost GPS GSM/GPRS Telemetry System: Performance in Stationary Field Tests and Preliminary Data on Wild Otters (Lutra lutra)

    Get PDF
    Background: Despite the increasing worldwide use of global positioning system (GPS) telemetry in wildlife research, it has never been tested on any freshwater diving animal or in the peculiar conditions of the riparian habitat, despite this latter being one of the most important habitat types for many animal taxa. Moreover, in most cases, the GPS devices used have been commercial and expensive, limiting their use in low-budget projects. Methodology/Principal Findings: We have developed a low-cost, easily constructed GPS GSM/GPRS (Global System for Mobile Communications/General Packet Radio Service) and examined its performance in stationary tests, by assessing the influence of different habitat types, including the riparian, as well as water submersion and certain climatic and environmental variables on GPS fix-success rate and accuracy. We then tested the GPS on wild diving animals, applying it, for the first time, to an otter species (Lutra lutra). The rate of locations acquired during the stationary tests reached 63.2%, with an average location error of 8.94 m (SD = 8.55). GPS performance in riparian habitats was principally affected by water submersion and secondarily by GPS inclination and position within the riverbed. Temporal and spatial correlations of location estimates accounted for some variation in the data sets. GPS-tagged otters also provided accurate locations and an even higher GPS fix-success rate (68.2%). Conclusions/Significance: Our results suggest that GPS telemetry is reliably applicable to riparian and even divin

    The influence of expectation on spinal manipulation induced hypoalgesia: An experimental study in normal subjects

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The mechanisms thorough which spinal manipulative therapy (SMT) exerts clinical effects are not established. A prior study has suggested a dorsal horn modulated effect; however, the role of subject expectation was not considered. The purpose of the current study was to determine the effect of subject expectation on hypoalgesia associated with SMT.</p> <p>Methods</p> <p>Sixty healthy subjects agreed to participate and underwent quantitative sensory testing (QST) to their leg and low back. Next, participants were randomly assigned to receive a positive, negative, or neutral expectation instructional set regarding the effects of a specific SMT technique on pain perception. Following the instructional set, all subjects received SMT and underwent repeat QST.</p> <p>Results</p> <p>No interaction (p = 0.38) between group assignment and pain response was present in the lower extremity following SMT; however, a main effect (p < 0.01) for hypoalgesia was present. A significant interaction was present between change in pain perception and group assignment in the low back (p = 0.01) with participants receiving a negative expectation instructional set demonstrating significant hyperalgesia (p < 0.01).</p> <p>Conclusion</p> <p>The current study replicates prior findings of c- fiber mediated hypoalgesia in the lower extremity following SMT and this occurred regardless of expectation. A significant increase in pain perception occurred following SMT in the low back of participants receiving negative expectation suggesting a potential influence of expectation on SMT induced hypoalgesia in the body area to which the expectation is directed.</p

    Estrogens protect male mice from obesity complications and influence glucocorticoid metabolism

    Get PDF
    BACKGROUND: Although the prevalence of obesity is higher among women than men, they are somewhat protected from the associated cardiometabolic consequences. The increase in cardiovascular disease risk seen after the menopause suggests a role for estrogens. There is also growing evidence for the importance of estrogen on body fat and metabolism in males. We hypothesized that that estrogen administration would ameliorate the adverse effects of obesity on metabolic parameters in males. METHODS: Male and female C57Bl/6 mice were fed control or obesogenic (DIO) diets from 5 weeks of age until adulthood. Glucose tolerance testing was performed at 13 weeks of age. Mice were killed at 15 weeks of age and liver and adipose tissue were collected for analysis of gene expression. A second cohort of male mice underwent the same experimental design with the addition of estradiol pellet implantation or sham surgery at 6 weeks. RESULTS: DIO males had greater mesenteric adipose deposition and more severe increases in plasma glucose, insulin and lipids than females. Treatment of males with estradiol from 6 weeks of age prevented DIO-induced increases in adipose tissue mass and alterations in glucose–insulin homeostasis. We also identified sex differences in the transcript levels and activity of hepatic and adipose glucocorticoid metabolizing enzymes. Estrogen treatment feminized the pattern of DIO-induced changes in glucocorticoid metabolism, rendering males similar to females. CONCLUSIONS: Thus, DIO induces sex-specific changes in glucose–insulin homeostasis, which are ameliorated in males treated with estrogen, highlighting the importance of sex steroids in metabolism. Given that altered peripheral glucocorticoid metabolism has been observed in rodent and human obesity, our results also suggest that sexually dimorphic expression and activity of glucocorticoid metabolizing enzymes may have a role in the differential metabolic responses to obesity in males and females
    corecore