2,078 research outputs found

    Retinoic acid is a key regulatory switch determining the difference between lung and thyroid fates in Xenopus laevis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The lung and thyroid are derived from the anterior endoderm. Retinoic acid and Fgf signalling are known to be essential for development of the lung in mouse but little is known on how the lung and thyroid are specified in <it>Xenopus</it>.</p> <p>Results</p> <p>If either retinoic acid or Fgf signalling is inhibited, there is no differentiation of the lung as assayed by expression of <it>sftpb</it>. There is no change in expression of thyroid gland markers when retinoic acid signalling is blocked after gastrulation and when Fgf signalling is inhibited there is a short window of time where <it>pax2 </it>expression is inhibited but expression of other markers is unaffected. If exogenous retinoic acid is given to the embryo between embryonic stages 20 and 26, the presumptive thyroid expresses <it>sftpb </it>and <it>sftpc</it>, specific markers of lung differentiation and expression of key thyroid transcription factors is lost. When the presumptive thyroid is transplanted into the posterior embryo, it also expresses <it>sftpb</it>, although <it>pax2 </it>expression is not blocked.</p> <p>Conclusions</p> <p>After gastrulation, retinoic acid is required for lung but not thyroid differentiation in <it>Xenopus </it>while Fgf signalling is needed for lung but only for early expression of <it>pax2 </it>in the thyroid. Exposure to retinoic acid can cause the presumptive thyroid to switch to a lung developmental program.</p

    ZOOMICS: comparative metabolomics of red blood cells from dogs, cows, horses and donkeys during refrigerated storage for up to 42 days

    Get PDF
    The use of omics technologies in human transfusion medicine has improved our understanding of the red blood cell (RBC) storage lesion(s). Despite significant progress towards understanding the storage lesion(s) of human RBCs, a comparison of basal and post-storage RBC metabolism across multiple species using omics technologies has not yet been reported, and is the focus of this study

    Maternal Malaria and Malnutrition (M3) initiative, a pooled birth cohort of 13 pregnancy studies in Africa and the Western Pacific.

    Get PDF
    PURPOSE: The Maternal Malaria and Malnutrition (M3) initiative has pooled together 13 studies with the hope of improving understanding of malaria-nutrition interactions during pregnancy and to foster collaboration between nutritionists and malariologists. PARTICIPANTS: Data were pooled on 14 635 singleton, live birth pregnancies from women who had participated in 1 of 13 pregnancy studies. The 13 studies cover 8 countries in Africa and Papua New Guinea in the Western Pacific conducted from 1996 to 2015. FINDINGS TO DATE: Data are available at the time of antenatal enrolment of women into their respective parent study and at delivery. The data set comprises essential data such as malaria infection status, anthropometric assessments of maternal nutritional status, presence of anaemia and birth weight, as well as additional variables such gestational age at delivery for a subset of women. Participating studies are described in detail with regard to setting and primary outcome measures, and summarised data are available from each contributing cohort. FUTURE PLANS: This pooled birth cohort is the largest pregnancy data set to date to permit a more definite evaluation of the impact of plausible interactions between poor nutritional status and malaria infection in pregnant women on fetal growth and gestational length. Given the current comparative lack of large pregnancy cohorts in malaria-endemic settings, compilation of suitable pregnancy cohorts is likely to provide adequate statistical power to assess malaria-nutrition interactions, and could point towards settings where such interactions are most relevant. The M3 cohort may thus help to identify pregnant women at high risk of adverse outcomes who may benefit from tailored intensive antenatal care including nutritional supplements and alternative or intensified malaria prevention regimens, and the settings in which these interventions would be most effective

    Donor sex, age and ethnicity impact stored red blood cell antioxidant metabolism through mechanisms in part explained by glucose 6-phosphate dehydrogenase levels and activity

    Get PDF
    Red blood cell storage in the blood bank promotes the progressive accumulation of metabolic alterations that may ultimately impact the erythrocyte capacity to cope with oxidant stressors. However, the metabolic underpinnings of the capacity of RBCs to resist oxidant stress and the potential impact of donor biology on this phenotype are not known. Within the framework of the REDS-III RBC-Omics study, RBCs from 8,502 healthy blood donors were stored for 42 days and tested for their propensity to hemolyze following oxidant stress. A subset of extreme hemolyzers donated a second unit of blood, which was stored for 10, 23, and 42 days and profiled again for oxidative hemolysis and metabolomics (599 samples). Alterations of RBC energy and redox homeostasis were noted in donors with high oxidative hemolysis. RBCs from females, donors over 60 years old, donors of Asian/South Asian race-ethnicity, and RBCs stored in additive solution-3 were each independently characterized by improved antioxidant metabolism compared to, respectively, males, donors under 30 years old, Hispanic and African American race ethnicity donors, and RBCs stored in additive solution-1. Merging metabolomics data with results from an independent GWAS study on the same cohort, we identified metabolic markers of hemolysis and G6PD-deficiency, which were associated with extremes in oxidative hemolysis and dysregulation in NADPH and glutathione-dependent detoxification pathways of oxidized lipids. Donor sex, age, ethnicity, additive solution and G6PD status impact the metabolism of the stored erythrocyte and its susceptibility to hemolysis following oxidative insults

    Response of Coastal Fishes to the Gulf of Mexico Oil Disaster

    Get PDF
    The ecosystem-level impacts of the Deepwater Horizon disaster have been largely unpredictable due to the unique setting and magnitude of this spill. We used a five-year (2006–2010) data set within the oil-affected region to explore acute consequences for early-stage survival of fish species inhabiting seagrass nursery habitat. Although many of these species spawned during spring-summer, and produced larvae vulnerable to oil-polluted water, overall and species-by-species catch rates were high in 2010 after the spill (1,989±220 fishes km-towed−1 [μ ± 1SE]) relative to the previous four years (1,080±43 fishes km-towed−1). Also, several exploited species were characterized by notably higher juvenile catch rates during 2010 following large-scale fisheries closures in the northern Gulf, although overall statistical results for the effects of fishery closures on assemblage-wide CPUE data were ambiguous. We conclude that immediate, catastrophic losses of 2010 cohorts were largely avoided, and that no shifts in species composition occurred following the spill. The potential long-term impacts facing fishes as a result of chronic exposure and delayed, indirect effects now require attention

    Correction to: Emergence of knock-down resistance in the Anopheles gambiae complex in the Upper River Region, The Gambia, and its relationship with malaria infection in children.

    Get PDF
    Unfortunately, the original article [1] contained an error mistakenly carried forward by the Production department handling this article whereby some figures and their captions were interchanged. The correct figures (Figs. 1, 2, 3, 4, 5) and captions are presented in this erratum. The original article has also been updated to reflect this correction

    Malaria, malnutrition, and birthweight: A meta-analysis using individual participant data.

    Get PDF
    BACKGROUND: Four studies previously indicated that the effect of malaria infection during pregnancy on the risk of low birthweight (LBW; <2,500 g) may depend upon maternal nutritional status. We investigated this dependence further using a large, diverse study population. METHODS AND FINDINGS: We evaluated the interaction between maternal malaria infection and maternal anthropometric status on the risk of LBW using pooled data from 14,633 pregnancies from 13 studies (6 cohort studies and 7 randomized controlled trials) conducted in Africa and the Western Pacific from 1996-2015. Studies were identified by the Maternal Malaria and Malnutrition (M3) initiative using a convenience sampling approach and were eligible for pooling given adequate ethical approval and availability of essential variables. Study-specific adjusted effect estimates were calculated using inverse probability of treatment-weighted linear and log-binomial regression models and pooled using a random-effects model. The adjusted risk of delivering a baby with LBW was 8.8% among women with malaria infection at antenatal enrollment compared to 7.7% among uninfected women (adjusted risk ratio [aRR] 1.14 [95% confidence interval (CI): 0.91, 1.42]; N = 13,613), 10.5% among women with malaria infection at delivery compared to 7.9% among uninfected women (aRR 1.32 [95% CI: 1.08, 1.62]; N = 11,826), and 15.3% among women with low mid-upper arm circumference (MUAC <23 cm) at enrollment compared to 9.5% among women with MUAC ≥ 23 cm (aRR 1.60 [95% CI: 1.36, 1.87]; N = 9,008). The risk of delivering a baby with LBW was 17.8% among women with both malaria infection and low MUAC at enrollment compared to 8.4% among uninfected women with MUAC ≥ 23 cm (joint aRR 2.13 [95% CI: 1.21, 3.73]; N = 8,152). There was no evidence of synergism (i.e., excess risk due to interaction) between malaria infection and MUAC on the multiplicative (p = 0.5) or additive scale (p = 0.9). Results were similar using body mass index (BMI) as an anthropometric indicator of nutritional status. Meta-regression results indicated that there may be multiplicative interaction between malaria infection at enrollment and low MUAC within studies conducted in Africa; however, this finding was not consistent on the additive scale, when accounting for multiple comparisons, or when using other definitions of malaria and malnutrition. The major limitations of the study included availability of only 2 cross-sectional measurements of malaria and the limited availability of ultrasound-based pregnancy dating to assess impacts on preterm birth and fetal growth in all studies. CONCLUSIONS: Pregnant women with malnutrition and malaria infection are at increased risk of LBW compared to women with only 1 risk factor or none, but malaria and malnutrition do not act synergistically

    Pregnancy outcomes and risk of placental malaria after artemisinin-based and quinine-based treatment for uncomplicated falciparum malaria in pregnancy: a WorldWide Antimalarial Resistance Network systematic review and individual patient data meta-analysis.

    Get PDF
    BACKGROUND: Malaria in pregnancy, including asymptomatic infection, has a detrimental impact on foetal development. Individual patient data (IPD) meta-analysis was conducted to compare the association between antimalarial treatments and adverse pregnancy outcomes, including placental malaria, accompanied with the gestational age at diagnosis of uncomplicated falciparum malaria infection. METHODS: A systematic review and one-stage IPD meta-analysis of studies assessing the efficacy of artemisinin-based and quinine-based treatments for patent microscopic uncomplicated falciparum malaria infection (hereinafter uncomplicated falciparum malaria) in pregnancy was conducted. The risks of stillbirth (pregnancy loss at ≥ 28.0 weeks of gestation), moderate to late preterm birth (PTB, live birth between 32.0 and < 37.0 weeks), small for gestational age (SGA, birthweight of < 10th percentile), and placental malaria (defined as deposition of malaria pigment in the placenta with or without parasites) after different treatments of uncomplicated falciparum malaria were assessed by mixed-effects logistic regression, using artemether-lumefantrine, the most used antimalarial, as the reference standard. Registration PROSPERO: CRD42018104013. RESULTS: Of the 22 eligible studies (n = 5015), IPD from16 studies were shared, representing 95.0% (n = 4765) of the women enrolled in literature. Malaria treatment in this pooled analysis mostly occurred in the second (68.4%, 3064/4501) or third trimester (31.6%, 1421/4501), with gestational age confirmed by ultrasound in 91.5% (4120/4503). Quinine (n = 184) and five commonly used artemisinin-based combination therapies (ACTs) were included: artemether-lumefantrine (n = 1087), artesunate-amodiaquine (n = 775), artesunate-mefloquine (n = 965), and dihydroartemisinin-piperaquine (n = 837). The overall pooled proportion of stillbirth was 1.1% (84/4361), PTB 10.0% (619/4131), SGA 32.3% (1007/3707), and placental malaria 80.1% (2543/3035), and there were no significant differences of considered outcomes by ACT. Higher parasitaemia before treatment was associated with a higher risk of SGA (adjusted odds ratio [aOR] 1.14 per 10-fold increase, 95% confidence interval [CI] 1.03 to 1.26, p = 0.009) and deposition of malaria pigment in the placenta (aOR 1.67 per 10-fold increase, 95% CI 1.42 to 1.96, p < 0.001). CONCLUSIONS: The risks of stillbirth, PTB, SGA, and placental malaria were not different between the commonly used ACTs. The risk of SGA was high among pregnant women infected with falciparum malaria despite treatment with highly effective drugs. Reduction of malaria-associated adverse birth outcomes requires effective prevention in pregnant women

    Population, behavioural and environmental drivers of malaria prevalence in the Democratic Republic of Congo

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Malaria is highly endemic in the Democratic Republic of Congo (DRC), but the limits and intensity of transmission within the country are unknown. It is important to discern these patterns as well as the drivers which may underlie them in order for effective prevention measures to be carried out.</p> <p>Methods</p> <p>By applying high-throughput PCR analyses on leftover dried blood spots from the 2007 Demographic and Health Survey (DHS) for the DRC, prevalence estimates were generated and ecological drivers of malaria were explored using spatial statistical analyses and multilevel modelling.</p> <p>Results</p> <p>Of the 7,746 respondents, 2268 (29.3%) were parasitaemic; prevalence ranged from 0-82% within geographically-defined survey clusters. Regional variation in these rates was mapped using the inverse-distance weighting spatial interpolation technique. Males were more likely to be parasitaemic than older people or females (p < 0.0001), while wealthier people were at a lower risk (p < 0.001). Increased community use of bed nets (p = 0.001) and community wealth (p < 0.05) were protective against malaria at the community level but not at the individual level. Paradoxically, the number of battle events since 1994 surrounding one's community was negatively associated with malaria risk (p < 0.0001).</p> <p>Conclusions</p> <p>This research demonstrates the feasibility of using population-based behavioural and molecular surveillance in conjunction with DHS data and geographic methods to study endemic infectious diseases. This study provides the most accurate population-based estimates to date of where illness from malaria occurs in the DRC and what factors contribute to the estimated spatial patterns. This study suggests that spatial information and analyses can enable the DRC government to focus its control efforts against malaria.</p
    corecore