28 research outputs found

    New insights into the association of air pollution and kidney diseases by tracing gold nanoparticles with inductively coupled plasma mass spectrometry

    Get PDF
    Exposure to particles in air pollution has been associated with kidney disease, however, the underlying biological mechanisms are incompletely understood. Inhaled particles can gain access to the circulation and, depending on their size, pass into urine, raising the possibility that particles may also sequester in the kidney and directly alter renal function. This study optimised an inductively coupled plasma mass spectrometry (ICP-MS) method to investigate the size dependency of particle accumulation in the kidney in mice following pulmonary instillation (0.8 mg in total over 4 weeks) to gold nanoparticles (2, 3-4, 7-8, 14 or 40 nm, or saline control). Due to the smallest particle sizes being below the limit of detection in single particle mode, ICP-MS was operated in the total quantification mode. Gold was detected in all matrices of interest (blood, urine and kidney) from animals treated with all sizes of gold nanoparticles, at orders of magnitude higher than the methodological limit of detection in biological matrices (0.013 ng/mL). A size-dependent effect was observed, with smaller particles leading to greater levels of accumulation in tissues. This study highlights the value of a robust and reliable method by ICP-MS to detect extremely low levels of gold in biological samples for indirect particle tracing. The finding that nano-sized particles translocate from the lung to the kidney may provide a biological explanation for the associations between air pollution and kidney disease

    Deletion of the myeloid endothelin-B receptor confers long-term protection from angiotensin II-mediated renal, retinal & vascular injury

    Get PDF
    International audienceThe endothelin system may be an important player in hypertensive end-organ injury as endothelin-1 increases blood pressure and is pro-inflammatory. The immune system is emerging as an important regulator of blood pressure and we have shown that the early hypertensive response to angiotensin-II infusion was amplified in mice deficient of myeloid endothelin-B (ETB) receptors (LysM-CreEdnrblox/lox). Hypothesizing that these mice would display enhanced organ injury, we gave angiotensin-II to LysM-CreEdnrblox/lox and littermate controls (Ednrblox/lox) for six weeks. Unexpectedly, LysM-CreEdnrblox/lox mice were significantly protected from organ injury, with less proteinuria, glomerulosclerosis and inflammation of the kidney compared to controls. In the eye, LysM-CreEdnrblox/lox mice had fewer retinal hemorrhages, less microglial activation and less vessel rarefaction. Cardiac remodeling and dysfunction were similar in both groups at week six but LysM-CreEdnrblox/lox mice had better endothelial function. Although blood pressure was initially higher in LysM-CreEdnrblox/lox mice, this was not sustained. A natriuretic switch at about two weeks, due to enhanced ETB signaling in the kidney, induced a hypertensive reversal. By week six, blood pressure was lower in LysM-CreEdnrblox/lox mice than in controls. At six weeks, macrophages from LysM-CreEdnrblox/lox mice were more anti-inflammatory and had greater phagocytic ability compared to the macrophages of Ednrblox/lox mice. Thus, myeloid cell ETB receptor signaling drives this injury both through amplifying hypertension and by inflammatory polarization of macrophages

    High salt intake activates the hypothalamic-pituitary-adrenal axis, amplifies the stress response, and alters tissue glucocorticoid exposure in mice

    Get PDF
    Aims: High salt intake is common and contributes to poor cardiovascular health. Urinary sodium excretion correlates directly with glucocorticoid excretion in humans and experimental animals. We hypothesized that high salt intake activates the hypothalamic-pituitary-adrenal axis activation and leads to sustained glucocorticoid excess. Methods and results: In male C57BL/6 mice, high salt intake for 2-8 weeks caused an increase in diurnal peak levels of plasma corticosterone. After 2 weeks, high salt increased Crh and Pomc mRNA abundance in the hypothalamus and anterior pituitary, consistent with basal hypothalamic-pituitary-adrenal axis activation. Additionally, high salt intake amplified glucocorticoid response to restraint stress, indicative of enhanced axis sensitivity. The binding capacity of Corticosteroid-Binding Globulin was reduced and its encoding mRNA downregulated in the liver. In the hippocampus and anterior pituitary, Fkbp5 mRNA levels were increased, indicating increased glucocorticoid exposure. The mRNA expression of the glucocorticoid-regenerating enzyme, 11尾-hydroxysteroid dehydrogenase Type 1, was increased in these brain areas and in the liver. Sustained high salt intake activated a water conservation response by the kidney, increasing plasma levels of the vasopressin surrogate, copeptin. Increased mRNA abundance of Tonebp and Avpr1b in the anterior pituitary suggested that vasopressin signalling contributes to hypothalamic-pituitary-adrenal axis activation by high salt diet. Conclusion: Chronic high salt intake amplifies basal and stress-induced glucocorticoid levels and resets glucocorticoid biology centrally, peripherally and within cells.</p

    A novel role for myeloid endothelin-B receptors in hypertension

    Get PDF
    International audienceAIMS:Hypertension is common. Recent data suggest that macrophages (M蠁) contribute to, and protect from, hypertension. Endothelin-1 (ET-1) is the most potent endogenous vasoconstrictor with additional pro-inflammatory properties. We investigated the role of the ET system in experimental and clinical hypertension by modifying M蠁 number and phenotype.METHODS AND RESULTS:In vitro, M蠁 ET receptor function was explored using pharmacological, gene silencing, and knockout approaches. Using the CD11b-DTR mouse and novel mice with myeloid cell-specific endothelin-B (ETB) receptor deficiency (LysMETB-/-), we explored the effects of modifying M蠁 number and phenotype on the hypertensive effects of ET-1, angiotensin II (ANG II), a model that is ET-1 dependent, and salt. In patients with small vessel vasculitis, the impacts of M蠁 depleting and non-depleting therapies on blood pressure (BP) and endothelial function were examined. Mouse and human M蠁 expressed both endothelin-A and ETB receptors and displayed chemokinesis to ET-1. However, stimulation of M蠁 with exogenous ET-1 did not polarize M蠁 phenotype. Interestingly, both mouse and human M蠁 cleared ET-1 through ETB receptor mediated, and dynamin-dependent, endocytosis. M蠁 depletion resulted in an augmented chronic hypertensive response to both ET-1 and salt. LysMETB-/- mice displayed an exaggerated hypertensive response to both ET-1 and ANG II. Finally, in patients who received M蠁 depleting immunotherapy BP was higher and endothelial function worse than in those receiving non-depleting therapies.CONCLUSION:M蠁 and ET-1 may play an important role in BP control and potentially have a critical role as a therapeutic target in hypertension

    A novel role for myeloid endothelin-B receptors in hypertension

    Get PDF
    International audienceAIMS:Hypertension is common. Recent data suggest that macrophages (M蠁) contribute to, and protect from, hypertension. Endothelin-1 (ET-1) is the most potent endogenous vasoconstrictor with additional pro-inflammatory properties. We investigated the role of the ET system in experimental and clinical hypertension by modifying M蠁 number and phenotype.METHODS AND RESULTS:In vitro, M蠁 ET receptor function was explored using pharmacological, gene silencing, and knockout approaches. Using the CD11b-DTR mouse and novel mice with myeloid cell-specific endothelin-B (ETB) receptor deficiency (LysMETB-/-), we explored the effects of modifying M蠁 number and phenotype on the hypertensive effects of ET-1, angiotensin II (ANG II), a model that is ET-1 dependent, and salt. In patients with small vessel vasculitis, the impacts of M蠁 depleting and non-depleting therapies on blood pressure (BP) and endothelial function were examined. Mouse and human M蠁 expressed both endothelin-A and ETB receptors and displayed chemokinesis to ET-1. However, stimulation of M蠁 with exogenous ET-1 did not polarize M蠁 phenotype. Interestingly, both mouse and human M蠁 cleared ET-1 through ETB receptor mediated, and dynamin-dependent, endocytosis. M蠁 depletion resulted in an augmented chronic hypertensive response to both ET-1 and salt. LysMETB-/- mice displayed an exaggerated hypertensive response to both ET-1 and ANG II. Finally, in patients who received M蠁 depleting immunotherapy BP was higher and endothelial function worse than in those receiving non-depleting therapies.CONCLUSION:M蠁 and ET-1 may play an important role in BP control and potentially have a critical role as a therapeutic target in hypertension
    corecore