
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Circulating argonaute-bound microRNA-126 reports vascular
dysfunction and treatment response in acute and chronic kidney
disease

Citation for published version:
Scullion, K, Vliegenthart, ADB, Rivoli, L, Oosthuyzen, W, Farrah, T, Czopek, A, Webb, DJ, Hunter, RW,
Bailey, MA & Dhaun, N 2021, 'Circulating argonaute-bound microRNA-126 reports vascular dysfunction and
treatment response in acute and chronic kidney disease', iScience.
https://doi.org/10.1016/j.isci.2020.101937

Digital Object Identifier (DOI):
10.1016/j.isci.2020.101937

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
iScience

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 22. Dec. 2021

https://doi.org/10.1016/j.isci.2020.101937
https://doi.org/10.1016/j.isci.2020.101937
https://www.research.ed.ac.uk/en/publications/cfcdcc28-6ac5-4625-a026-38d929516444


ll
OPEN ACCESS
iScience

Article
Circulating argonaute-bound microRNA-126
reports vascular dysfunction and treatment
response in acute and chronic kidney disease
Kathleen M.

Scullion, A. D.

Bastiaan

Vliegenthart,

Laura Rivoli, ...,

Matthew A. Bailey,

Neeraj Dhaun,

James W. Dear

james.dear@ed.ac.uk

HIGHLIGHTS
New biomarkers are

needed that report

vascular function in

patients with kidney

disease

The endothelial

microRNA, miR-126, was

reduced with vascular

inflammation (vasculitis)

miR-126 correlated with

vascular health in chronic

kidney disease

Circulating miR-126 may

be a marker of vascular

dysfunction

Scullion et al., iScience 24,
101937
January 22, 2021 ª 2020 The
Author(s).

https://doi.org/10.1016/

j.isci.2020.101937

mailto:james.dear@ed.ac.uk
https://doi.org/10.1016/j.isci.2020.101937
https://doi.org/10.1016/j.isci.2020.101937
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isci.2020.101937&domain=pdf


ll
OPEN ACCESS
iScience
Article
Circulating argonaute-bound microRNA-126 reports
vascular dysfunction and treatment response
in acute and chronic kidney disease

Kathleen M. Scullion,1 A. D. Bastiaan Vliegenthart,1 Laura Rivoli,1 Wilna Oosthuyzen,1 Tariq E. Farrah,1

Alicja Czopek,1 David J. Webb,1 Robert W. Hunter,1 Matthew A. Bailey,1 Neeraj Dhaun,1,2

and James W. Dear1,2,3,*
SUMMARY

Vascular and kidney dysfunction commonly co-exist. There is a need for bio-
markers of vascular health. Circulating microRNAs are biomarkers; miR-126 is
endothelial cell-enriched. We measured circulating miR-126 in rats with nephro-
toxic nephritis (NTN) and humans with acute endothelial and renal injury (vascu-
litis associated with autoantibodies to neutrophil cytoplasm antigens (ANCAs)).
We compared these findings to those from patients with chronic kidney disease
(CKD) and end-stage renal disease (ESRD) and explored the relationship between
miR-126 and vascular dysfunction. In NTN, miR-126 was reduced. In ANCA vascu-
litis (N = 70), pre-treatment miR-126 was reduced compared to health (N = 60)
(88-fold). miR-126 increased 3.4-fold post-treatment but remained lower than
in health (�26-fold). Argonaute 2-bound miR-126 increased with ANCA vasculitis
treatment. miR-126 did not differ between CKD (N = 30) and health but its con-
centration correlated with endothelial dysfunction. miR-126 was reduced in
ESRD (N = 15) (�350 fold). miR-126 may be a marker of vascular inflammation
and could aid decision-making.
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INTRODUCTION

Vascular dysfunction commonly co-exists with kidney disease and contributes to an increased risk of car-

diovascular disease (CVD). A severe, acute form of this vascular-renal phenotype is seen in patients pre-

senting with anti-neutrophil cytoplasm antibody-associated vasculitis (AAV), a rare autoimmune disorder.

The most frequent severe manifestations of AAV involve endothelial injury giving rise to a rapidly progres-

sive glomerulonephritis and pulmonary hemorrhage. Despite current treatments overall survival remains

poor (Flossmann et al., 2011; Hoffman et al., 1992) with many patients suffering chronic inflammation, a ma-

jor contributor to the development and progression of both CVD (Hahn, 2003) and chronic kidney disease

(CKD) (Landray et al., 2004). Furthermore, those who respond to treatment remain at risk of further disease

relapses (Boomsma et al., 2000).

Identifying AAV early and assessing its response to treatment remain important clinical challenges. In those

with renal involvement, the measurement of renal function using serum creatinine is often inadequate

because substantial renal damage can occur before function is impaired to a detectable extent (Hewitt

et al., 2004). Additionally, although serum creatinine may fall with treatment, it remains unclear whether his-

tological inflammation continues once renal function has stabilized. Also, currently, there are no goodmea-

sures of disease activity in those with extra-renal AAV alone. Biomarkers specific to small vessel inflamma-

tion would not only allow early implementation of appropriate treatments but also help identify those

patients with grumbling disease activity and potentially predict disease relapses (Kitching et al., 2020).

While AAV might be considered a phenotypic extreme, patients with CKD due to any cause are at an

increased risk of CVD (Foley et al., 1998). Indeed, those with CKD have a substantially higher chance of

dying from CVD than of progressing to end-stage renal disease (ESRD) (Sarnak et al., 2003). Increased arte-

rial stiffness, a marker of CVD risk (Blacher et al., 1999; Guerin et al., 2008), is a commonly recognized

feature of CKD (Guerin et al., 2008), and an independent predictor of mortality and survival in these patients
iScience 24, 101937, January 22, 2021 ª 2020 The Author(s).
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Figure 1. Circulating miRs in rats with nephrotoxic nephritis (NTN) and controls

Each point represents the 2�dct value (normalized by miR-1287) of circulating miR-126 (A), miR-122 (B) and miR-125a (C).

The horizontal line represents themedian and the bars represent the IQR. Significance determined byMann-Whitney test.
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(Blacher et al., 1999; Guerin et al., 2001). The endothelium is an important regulator of arterial stiffness (Wil-

kinson et al., 2004), and endothelial dysfunction is also a common feature of CKD (Endemann and Schiffrin,

2004; van Guldener et al., 1997, 1998) and a predictor of CVD (Perticone et al., 2001).

MicroRNAs (miRs) are small (�22 nucleotide-long) non-protein coding RNA species involved in post-tran-

scriptional gene product regulation (Bartel, 2009). In blood, miRs are reported to be stable being protected

from degradation by extra-cellular vesicles (such as exosomes), RNA binding protein complexes (such as

argonaute 2 – Ago2) and lipoproteins (Mitchell et al., 2008; Zhou et al., 2013). As miRs are amplifiable

and some are tissue restricted, they represent a new reservoir for biomarker discovery. For example,

miR-122 is an established biomarker for liver injury (Starkey Lewis et al., 2011).

miR-126 is enriched in endothelial cells and is a regulator of vascular integrity and angiogenesis. The -3p

and -5p forms of miR-126 have activity in endothelial cells – 3p is anti-inflammatory (Harris et al., 2008)

and 5p is pro-proliferative (Schober et al., 2014). miR-126 is reported to be released from endothelial cells

bound to Ago2 and in extra-cellular vesicles, which can transfer functional miR-126 into recipient cells to

promote vascular repair (Zhou et al., 2013). When endothelial cells were stimulated with the pro-inflamma-

tory cytokine TNFa, the miR-126 cargo of their extra-cellular vesicles was reduced by 80%, consistent with

vesicular miR-126 reporting endothelial inflammation (Alexy et al., 2014). Reduced levels of circulating miR-

126 have been described as a potential biomarker for vascular disorders such as diabetes (Jansen et al.,

2013; Zampetaki et al., 2010) and myocardial infarction (Zampetaki et al., 2012). In patients with CKD,

miR-126 has been reported to fall with worsening renal function (Fourdinier et al., 2019). miR-126 is also ex-

pressed in platelets (Kaudewitz et al., 2016) and its circulating level has been reported to reflect the circu-

lating platelet count and activation state (Lorenzen et al., 2012; Willeit et al., 2013).

We hypothesized that circulating miR-126 would report vascular dysfunction in patients with kidney dis-

ease. As ‘proof-of-concept’, we first measured miR-126 in a relevant animal model, then in those with

AAV. Finally, we measured miR-126 in patients with CKD and ESRD, as well as explored the relationship

with established measures of endothelial function.

RESULTS

Circulating miR in NTN model

In NTN rats, plasma miR-126 was reduced compared with untreated controls when the data were normal-

ized by miR-1287 (Figure 1). This reduction in miR-126 was also reported by raw Ct values without any

normalization (control Ct 27.6 [27.0–27.8], n = 6, NTN Ct 29.3 [28.4–30.1], n = 5, p = 0.02) There were no

differences in miR-122 or miR-125a-5p between NTN and controls (Figure 1).

Effect of blood processing

In healthy subjects, there was a significant difference in miR-126 concentration between plasma and serum.

There was a significant decrease in miR-126 after blood storage for 24hr at both room temperature and at

4�C (Figure S1A). After 7d delay in processing, the concentration of miR-126 significantly increased relative

to 24hr. Hemolysis accompanied this increase in miR-126 (for serum, no delay: A414 0.22 [0.20–0.31]; 7d

delay: A414 1.80 [0.60–1.80], p = 0.03; for plasma, no delay: A414 0.16 [0.16–0.28]; 7d delay: A414 0.30

[0.22–0.45]; p = 0.03). Based on these data, only immediately processed plasma samples were used in all
2 iScience 24, 101937, January 22, 2021



Table 1. Clinical data for patients with AAV pre- and post-treatment

Characteristics Pre-treatment (n = 70) Post-treatment (n = 70) p value

Age, years 62 G 14 (27–82) – –

Sex, M/F 43/27 – –

Organs involved 2 G 1 (1–6) – –

Kidney 44 – –

Lung 33 – –

ENT 17 – –

Nerve 13 – –

Eyes 9 – –

eGFR, mL/min/1.73m2 46 G 34 (4–124) 57 G 29 (9–121) 0.04

Creatinine, mmol/L 200 G 177 (54–962) 150 G 144 (64–1000) 0.03

ALT, U/L 20 G 15 (6–83) 20 G 10 (4–48) 0.94

ALP, U/L 96 G 62 (13–338) 67 G 18 (39–122) <0.001

GGT, U/L 55 G 44 (11–182) 33 G 26 (10–148) <0.001

Albumin, g/L 28 G 7 (14–41) 37 G 4 (24–46) <0.0001

CRP, mg/L 82 G 75 (3–275) 6 G 15 (0–108) <0.0001

Hemoglobin, g/L 107 G 23 (62–157) 124 G 28 (2–170) <0.0001

Urine protein:creatinine mg/mmol 141 G 188 (0–948) 107 G 146 (0–531) 0.82

The data are shown as mean G SD with range. Significance of numerical data between groups was ascertained using a 2-

tailed paired t test.
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subsequent studies. After processing human blood into plasma or serum, storage at room temperature or

4�C for 24 hr or 7 days had no statistically significant effect on miR-126 concentration (Figure S1B). There-

fore, after immediate isolation of plasma from blood, samples could be stored for short periods before

analysis.

Circulating miR in AAV

Seventy patients with AAV were recruited into this study. Pre- and post-treatment clinical data are shown in

Table 1. No patients had diabetes or received anti-platelet treatment. Pre-treatment, the plasma miR-126

concentration was 88-fold lower than in healthy controls (AAV median 0.8 fM [IQR 0.3–2.9], healthy subjects

70.4 fM (17.2–770) (Figure 2). ROC analysis was performed to quantify the accuracy of miR-126 with regard

to distinguishing health from AAV. The area under the curve was 0.87 (95% CI: 0.80–0.94). At a cutoff of

>33fM, specificity was 96% (95% CI: 88–99) and sensitivity was 69% (57–80). Post-treatment, all 70 patients

achieved disease remission (Table 1). Plasma miR-126 concentration increased 3.4-fold from pre-treatment

levels (post-treatment median 2.7 fM [IQR 0.5–9.8]) but did not return to healthy levels. miR-122 plasma

concentrations were not different between pre- and post-treatment samples from patients with AAV

(pre-treatment 1.6 fM [0.7–3.4], post-treatment 1.8 fM [0.7–4.7]). There was no correlation between miR-

126 and the patient’s platelet count either pre- or post-treatment (Figure S2A).

Urine miR-126 was measured pre- and post-immunosuppressive treatment (Figure 3). Using 3 different

normalization methods (spike-in microRNA, urinary creatinine or internal microRNA) the urinary concentra-

tion of miR-126 consistently decreased post-treatment.

Mechanism of miR-126 release into the circulation

miRs circulate bound to proteins or encapsulated in extra-cellular vesicles such as exosomes. Plasma from

healthy volunteers was fractionated by differential centrifugation and extra-cellular vesicles were isolated

(confirmed by nanoparticle tracking analysis – Figure 4A). miR-126 was enriched in the ‘protein fraction’ as

opposed to the extra-cellular vesicle fraction (29-fold increase in supernatant compared to pellet) (Fig-

ure 4B). The RNA binding protein Ago2 was isolated from plasma and the bound miR-126 concentration

measured. There was a significant increase in Ago2-bound miR-126 in those with AAV post-treatment
iScience 24, 101937, January 22, 2021 3
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Figure 2. The concentration of miR-126 in patients with ANCA-associated vasculitis (AAV) (n = 70 paired) pre- and

post-treatment, healthy volunteers (n = 60), chronic kidney disease (CKD) (n = 30) and end-stage renal disease (n =

15 paired) pre- and post-hemodialysis (HD)

Bars show median with IQR, **p < 0.01, ****p < 0.0001 (Mann-Whitney test for unpaired analysis and Wilcoxon test for

paired analysis).
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(Figure 4C), consistent with this miR biomarker being specifically bound to Ago2. By contrast there was no

significant treatment-induced change in miR-126 in the extra-cellular vesicle fraction (Figure 4D). There was

no increase in Ago2-bound miR-122 and no change in plasma Ago2 concentration with treatment (data not

shown).

Circulating miR-126 in CKD

Having demonstrated proof-of-concept that miR-126 changes with acute endothelial/kidney injury, we

explored its circulating concentration in CKD. This condition is associated with chronic endothelial dysfunc-

tion and high cardiovascular risk. There were no patients in this cohort with diabetes. Samples were

analyzed from patients with CKD (n = 30) and hemodialysis-dependent ESRD (n = 15), immediately before

and after dialysis (Table 2). In patients with ESRD, miR-126 was substantially reduced compared with

healthy subjects and patients with CKD (352- and 358-fold, respectively). There was a modest increase

following a hemodialysis session (4.7-fold) (Figure 2). There was a range of plasma miR concentrations in

patients with CKD, which we hypothesized might reflect differences in vascular health across this patient

group. For these patients, we correlated miR concentrations against a range of well-recognized measures

of vascular function. miR-126 correlated significantly with PWV (r2 = 0.2), circulating ADMA (r2 = 0.28), ET-1

(r2 = 0.14) and urate concentrations (r2 = 0.19), as well as proteinuria (r2 = 0.17) (Figure 5). miR-126 correlated

weakly with serum creatinine (r2 = 0.12). There was no relationship between miR-122 and any of the mea-

sures of vascular or renal function assessed. There was no correlation between miR-126 and the patient’s

platelet count either in the CKD or ESRD groups (Figures S2B and S2C).

DISCUSSION

The current study develops the potential role of miR-126 as a circulating biomarker of vascular function in

acute and CKD. We initially achieved proof of concept in rodents and then went on to study AAV as a pro-

totype of severe, acute kidney injury and vascular dysfunction that is aggressively treated with immunosup-

pression. Then, we went on to study patients with CKD as they have a heavy burden of vascular dysfunction.

In a clinically relevant rat model, a lower circulating miR-126 (but not other miR species) was associated with

disease. We have demonstrated that in patients with AAV, circulating miR-126 concentrations are low at

disease presentation and rise with successful treatment. Pre-treatment levels are lower than those seen

in health and in CKD. Following treatment, miR-126 rises but not to levels seen in health. A liver-specific

miR species (miR-122) showed no differences in patients with AAV before or after treatment. In patients

with CKD, miR-126 correlated with other markers of vascular health. miR-126 was substantially reduced

in patients with ESRD. Thus, miR-126 may be a useful marker of vascular inflammation and, with develop-

ment, may help clinical decision-making.
4 iScience 24, 101937, January 22, 2021
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Figure 3. Urine miR-126 in patients with AAV, pre- (Pre-AAV) and post- (Post-AAV) treatment

Each point represents the 2�dct value (normalized by C.elegansmiR-39 spike-in control (A), urinary creatinine concentration (B) and miR-671 (C)) of miR-126.

Significance determined by Wilcoxon Test.
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miRs are an area of substantial research interest, in part because they represent potential disease bio-

markers. It is widely believed that one of their key properties is that they are stable in the circulation (Mitch-

ell et al., 2008). In the current study, we have demonstrated that for miR-126 this is not the case: significant

degradation occurred if the sample was left unprocessed for 24hr. We have reported similar instability for

miR-122 (Lopez-Longarela et al., 2020). We also demonstrated that hemolysis may increase the concentra-

tion of miR-126 present in the sample. Furthermore, despite reports that miRs are detected at similar con-

centrations in plasma and serum, plasma miR-126 was substantially higher than serum. Therefore, we

recommend the immediate processing of plasma samples in future studies of miR-126.
A B

C D

Figure 4. miR-126 is bound to argonaute 2 (Ago2) in human plasma

(A) size and number of particles measured by nanoparticle tracking analysis (NTA) following isolation of extra-cellular

vesicles from human plasma by differential centrifugation.

(B) Dot plot of miR-126 measured in the extra-cellular vesicle containing pellet and supernatant after ultracentrifugation

of human plasma.

(C) Dot plot of miR-126 measured in the antibody isolated Ago2 fraction from 8 patients with AAV before treatment (Pre-

AAV) and after treatment (Post-AAV). The y axis represents copy number obtained from the Ago2 pull-down minus the

copy number obtained from IgG control pull-down from the same sample.

(D) Dot plot of miR-126 measured in the extra-cellular vesicle containing pellet from 8 patients with AAV before treatment

(Pre-AAV) and after treatment (Post-AAV). The horizontal line represents the median and the error bars represent the IQR.

Significance determined by Wilcoxon Test.

iScience 24, 101937, January 22, 2021 5



Table 2. Clinical data obtained for CKD patients and ESRD patients pre-hemodialysis (HD)

Characteristics CKD (n = 30) Pre-HD (n = 15)

Age, years 56 G 16 (26–82) 59 G 12 (34–82)

Sex, M/F 21/9 8/7

eGFR, mL/min/1.73m2 25 G 14 (7–57) –

Creatinine, mmol/L 217 G 133 (76–654) –

ALT, U/L 19 G 8 (9–50) 15 G 6 (7–25)

ALP, U/L 97 G 38 (40–182) 100 G 43 (52–178)

CRP, mg/L 5 G 2 (2–7) 14 G 21 (2–77)

Hemoglobin, g/L 123 G 16 (83–160) 122 G 12.51 (94–139)

The data are shown as mean G SD with range.
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miR-126 increased in the circulation following successful treatment of patients with AAV. There was no

change in miR-122, a liver-specific miR not expressed in the endothelium. This is consistent with a spe-

cific change in the endothelium but deeper analysis of multiple miRs is required. In spot urine samples,

miR-126 was reduced by treatment, which may contribute to the increase in the circulation. miR circulate

encapsulated in extra-cellular vesicles such as exosomes and bound to proteins especially Ago2, but the

relative contribution and biological importance of each fraction is controversial (Chevillet et al., 2014). In

our study, when plasma was fractionated by centrifugation miR-126 predominately remained in the su-

pernatant. This is consistent with studies that report a low amount of miR-126 in human exosomes (Che-

villet et al., 2014). Importantly, we demonstrate here that miR-126 is bound to the circulating protein

Ago2 and this fraction increases in patients with AAV following successful disease treatment. It is re-

ported that stimulation of endothelial cells with TNFa resulted in a decrease of miR-126 (Alexy et al.,

2014). This is in keeping with our own findings and suggests that the reduction in circulating miR-126

in those with active AAV may reflect a degree of endothelial dysfunction secondary to inflammation.

This hypothesis is further supported by miR-126 being enriched in the endothelium (Harris et al., 2008)

and our strong correlation between the circulating miR-126 and markers of endothelial function such

as pulse wave velocity and ADMA. From a clinical perspective, a circulating biomarker that reports

vascular health could have widespread utility and prospective studies should qualify miR-126 in a range

of settings, including other systemic inflammatory disorders such as rheumatoid arthritis and systemic

lupus erythematosus.

In keeping with our hypothesis that miR-126 might act as a measure of vascular integrity, circulating levels

did correlate with well-recognized measures of endothelial dysfunction in our CKD cohort namely, high

PWV, ADMA, ET-1, and urate. Plasma ADMA, an endogenous inhibitor of nitric oxide synthase, and plasma

ET-1 were measured as components of the nitric oxide and ET systems, respectively. Both contribute to

vascular dysfunction in CKD and an imbalance (more ET-1/less nitric oxide) may contribute to vasoconstric-

tion, inflammation and atherosclerosis (Boger, 2003; Dhaun et al., 2006). Serum urate has also emerged as

an important risk factor for cardiovascular risk and CKD progression (Feig et al., 2008). Treatment of asymp-

tomatic hyperuricemia has been shown to improve renal function (Kanbay et al., 2007) and delay disease

progression (Siu et al., 2006) in patients with early CKD. From a clinical perspective, ET receptor antago-

nism is being investigated as a novel therapeutic strategy for renoprotection in CKD (Dhaun and Webb,

2019). It has been shown to not only lower proteinuria but also serum urate (Dhaun et al., 2013; Heerspink

et al., 2019). Furthermore, given there is often reciprocal up-regulation of the nitric oxide system when the

ET system is down-regulated (Dhaun et al., 2006) an ET blocking strategy may offset some of the potentially

deleterious effects of elevated circulating ADMA.

Interestingly, our data suggest no substantial difference in circulating miR-126 between health and CKD.

The lack of a clear differencemay relate to the CKD population we studied as they hadminimal comorbidity

without overt CVD. Additionally, we excluded those with diabetes. Indeed, the ‘‘vascular health’’ of our

CKD subjects is demonstrated by a mean pulse wave velocity of 6.8 m/s, significantly lower than that of

8.2 m/s for a group with a similar eGFR reported in a study by Wang et al. (Wang et al., 2005). They used

a similar technique for measuring arterial stiffness but included patients with diabetes and CVD. Further-

more, our subjects were relatively young (�50 years), with good blood pressure control (�135/80 mmHg)
6 iScience 24, 101937, January 22, 2021
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Figure 5. Scatterplots of asymmetric dimethylarginine (ADMA)

(A and B) (A) and pulse wave velocity (PWV) (B) versus circulating miR-126 in patients with CKD.

(C) Table with Pearson r (95% CI), r2 and p values of correlation between miR-126 and miR-122-5p and other biomarkers.
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and reasonably preserved renal function (eGFR �75 mL/min). Thus, future studies should extend to the

wider spectrum of CKD.

With further clinical development, miR-126 may have utility as a biomarker of vascular dysfunction in pa-

tients with kidney disease (and possibly in people with normal kidney function). Such a miR biomarker

may provide a readout of cardiovascular drug efficacy that translates from pre-clinical models into early

phase clinical trials. In support of this, we have demonstrated that miR-126 tracks effective treatment in pa-

tients with AAV and reports injury when translated back into a rat model of nephrotoxic nephritis. The work

presented here provides proof of concept data to build on in larger studies that test utility, both in the spe-

cific clinical scenario of reporting disease activity in vasculitis, and across a broader group of patients with

acute kidney injury and CKD.
Limitations of the study

miR-126 is expressed in platelets and this represents an alternative source of miR-126 in the circulation.

There was no correlation with the platelet counts across patient groups, but this does not exclude a differ-

ence in platelet activation state. While this cannot be excluded when comparing the AAV patients pre- and

post-treatment it is unlikely to be a factor in the CKD group, where miR-126 correlated significantly with

markers of endothelial dysfunction but not with platelet counts. Future studies could replicate our obser-

vations in platelet poor plasma as described by Sunderland et al. (Sunderland et al., 2017). We represent

miR-126 in AAV as an absolute concentration generated from a standard curve using synthetic miR-126. The

values generated allow comparison across groups, but the absolute value should be interpreted with

caution as the reverse transcription efficiency may differ between synthetic target in buffer and plasma.

Furthermore, release of miR-126 from platelets during sample processing could lead to higher apparent

concentrations than are present in the cell-free fraction in vivo. Our data demonstrate that the Ago2 frac-

tion of miR-126 changes with treatment of patients with AAV. To thoroughly characterize the role of extra-

cellular vesicles, future studies should follow the guidelines published by the International Society of Extra-

cellular Vesicles (Thery et al., 2018).
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Materials availability

No new reagents were generated in this study.

Data and code availability

Data are available on request from the corresponding author.

METHODS

All methods can be found in the accompanying Transparent methods supplemental file.
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Supplementary figure 1: Effect of storage on serum & plasma miR-126. Related to figure 2. 

A) Bar graphs displaying median Ct values of miR-126 measured by qPCR. Blood samples 
were collected from healthy volunteers (n=6). One serum and plasma blood tube was 
centrifuged and the supernatant frozen at -80 0C without delay. The remaining blood tubes 
were left at room temperature (RT) or 40C for 24h or 7 days before being processed and stored 
at -80 0C. B) Serum and plasma samples were immediately centrifuged to isolate 
serum/plasma. One serum and one plasma sample were stored at -800C without delay and 
the remaining tubes were left at room temperature (RT) or 40C for 24h or 7 days. Error bars 
represent the interquartile range. 
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Supplementary figure 2: The relationship between plasma miR-126 and platelet count in 

patients with ANCA-associated vasculitis (AAV). Related to figure 2. 

Pre and post treatment (A), chronic kidney disease (B) and End-stage kidney disease (C).  
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Supplementary figure 3: Standard curves used for absolute quantification of miRs. Related 

to Figure 2. 

(A) miR-122 and (B) miR-126 standard curves for absolute quantification in patient samples. 
The solid blue line shows the semilog and the dotted line shows the 95% confidence interval 
(CI). 
  



Transparent Methods 

 
Participant groups  

All studies were approved by the local research ethics committee and performed in 

accordance with the Declaration of Helsinki. The study, entitled “MicroRNA signatures of 

disease activity in ANCA-associated vasculitis”, REC reference 13/ES/0126 (formerly 

10/S1402/33) was approved by The Tissue Governance committee in June 2015. Informed 

consent was obtained from all study participants.  

 

Patients with ANCA Associated Vasculitis (AAV) 

Patients presenting with AAV were recruited at the Royal Infirmary of Edinburgh, UK. Inclusion 

criteria were seropositivity for ANCA and organ-threatening disease requiring 

immunosuppression. Disease activity was graded according to the BVAS (scores range from 

0 to 63, with higher scores indicating more active disease) (Mukhtyar et al., 2009) and by 

investigators’ assessments of disease activity as remission, ongoing active disease (treatment 

failure), or relapse. Remission was defined as a BVAS score of 0 that was maintained for 2 

months and a prednisone dosage of ≤10 mg/day.  

 

Patients with CKD  

Subjects were recruited from the renal outpatient clinic at the Royal Infirmary of Edinburgh. 

The inclusion criteria were: male or female CKD patients, 18-65 years old and clinic BP 

≤160/100 mmHg, whether or not on anti-hypertensive medication. We excluded patients with 

a renal transplant or on dialysis, patients with systemic vasculitis or connective tissue disease, 

those with a history of established cardiovascular disease, peripheral vascular disease, 

diabetes mellitus, respiratory disease, neurological disease, current alcohol abuse or 

pregnancy. 

 

 



Patients with ESRD 

Inclusion criteria were: age 18 or over, treated with haemodialysis (HD) for over 3 months. 

Patients affected by liver disease or with a history of hepato-biliary surgery were excluded; 

other exclusion criteria were consumption of cytochrome P450-inducing medications, past 

medical history of epilepsy, cancer, alcoholism and/or psychiatric disease. All patients were 

treated with HD for 4-5 hours per session, 3 times per week. Data collected included 

demographic characteristics, cause of ESRD, time on dialysis and current medications. As 

heparin in blood samples can inhibit polymerase chain reaction (PCR), blood samples were 

only used when the patient had not been exposed to heparin in the preceding 24 hours. 

 

Healthy subjects 

Adults with no medical complaints and no medication use were recruited and blood was drawn 

with informed consent.  

 
Blood samples 

In healthy subjects, blood was collected into 3 EDTA plasma (2.7 ml) and 3 serum (4.9 ml) 

tubes. One of each type of blood tube was processed without delay – by centrifugation at 1200 

x g for 10 min at 40C and then supernatant then frozen at -800C. The remaining tubes of blood 

were left unprocessed at room temperature or 40C for 24h or 7 days. Hemolysis was quantified 

by spectrophotometric methods as described previously (Kirschner et al., 2013). In a second 

study plasma and serum was left at room temperature or 40C for 24h or 7 days.  

 

In patients with AAV, blood samples were taken at study entry (before treatment) and at 

disease remission (as defined above). For CKD patients, samples were taken from a 

previously published study and were collected on the study day (Lilitkarntakul et al., 2011). 

Blood was collected into EDTA tubes and processed immediately as above. Urine was also 

collected and immediately frozen at -800C.  

 



Plasma asymmetric dimethylarginine (ADMA), an endogenous inhibitor of nitric oxide 

synthesis, was measured using an optimised, fully validated high performance liquid 

chromatography method (intra- and inter-assay variations of 1.9% and 2.3%, respectively) 

(Blackwell et al., 2007). Plasma endothelin-1 (ET-1), the most potent endogenous 

vasoconstrictor, which contributes to CKD development and progression,(Dhaun et al., 2006) 

was determined by radioimmunoassay (Peninsular Laboratories Europe, St. Helens, UK) 

(assay variations 6.3% and 7.2%) (Strachan et al., 1999). The urate assay was based on the 

methods of Trivedi and Kabasakalian (Trivedi et al., 1978). Uric acid is oxidized to allantoin by 

uricase with the production of hydrogen peroxide (H2O2). The H2O2 reacts with 4-

aminoantipyrine (4-AAP) and 2,4,6-tribromo-3-hydroxybenzoic acid (TBHB) in the presence 

of peroxidase to yield a quinoneimine dye. The resulting change in absorbance at 548 nm is 

proportional to the uric acid concentration in the sample. The limits of detection and 

quantification for the urate assay are 0.01 mmol/l and 0.015 mmol/l, respectively. 

 

Extra-cellular vesicle isolation 

Human plasma was fractionated by differential centrifugation to concentrate extra-cellular 

vesicles, as previously described (Chevillet et al., 2014). Plasma (1 mL) was centrifuged at 

500 x g for 30 min then 12,000 x g for 20 min. The supernatant was then ultracentrifuged at 

100,000 x g for 1h to pellet extra-cellular vesicles. The remaining supernatant is referred to as 

the ‘protein fraction’. The vesicles were re-suspended and then pelleted a second time by 

ultracentrifugation. Extra-cellular vesicle presence and number was quantified by nanoparticle 

tracking analysis as previously described (Oosthuyzen et al., 2013). miR concentration in each 

fraction was determined by PCR, described below. 

 

Ago2 isolation 

MagnaBind goat anti-mouse IgG magnetic bead slurry, 100 μL, (Thermo Scientific, Waltham, 

USA) was incubated with 10 μg of mouse monoclonal anti-Ago2 (Abcam, Cambridge, UK) or 

mouse normal IgG (Santa Cruz Biotechnology, Dallas, US) antibodies for 2h at 4°C. The 



antibody-coated beads were then added to plasma and incubated overnight at 4°C with 

rotation. Beads were washed and each sample then eluted in RNAse free water before QIAzol 

was added for RNA isolation. Ago2 isolation was determined by Western blot analysis as 

described (Dear et al., 2011). 

 

Measurement of arterial stiffness 

In a subset of patients gold standard pulse wave velocity (PWV) was measured by the foot-

to-foot wave velocity method using the SphygmoCorTM system (SphygmoCorTM Mx, AtCor 

Medical, Sydney, Australia, version 6.31), in which a high-fidelity micromanometer (SPC-301, 

Millar Instruments, Texas, USA) was used to determine carotid-femoral PWV (Oliver and 

Webb, 2003). 

 
Measurement of plasma and urine miR 

The following miR were measured: miR-126-3p, miR-122-5p, miR-1287 and miR-671. 

 
RNA extraction 

RNA was extracted from each sample (50 µl) using the miRNeasy serum/plasma kit (Qiagen, 

Venlo, Netherlands).  

  

PCR 

After RNA extraction, 5 µl of each eluate was reverse transcribed into cDNA using the miScript 

II RT Kit (Qiagen, Venlo, Netherlands). The synthesised cDNA was ten-fold diluted and used 

for cDNA template in combination with the miScript SYBR Green PCR Kit (Qiagen, Venlo, 

Netherlands) using the specific miScript assays (Qiagen, Venlo, Netherlands). Real-time PCR 

was performed on a Light Cycler 480 (Roche, Basel, Switzerland) using the recommended 

miScript cycling parameters.  

 

 



 

Absolute miRNA quantification 

Absolute quantification of miRs was achieved by generating a standard curve using synthetic 

target. Standard curves were generated by reverse transcribing known concentrations of 

miScript miRNA mimics (Qiagen, Venlo, The Netherlands) in 0.1X TE buffer spiked with 10 

ng/μl Poly-C (Sigma-Aldrich, Gillingham, UK). The resulting cDNA was measured using serial 

dilutions on 3 different plates on three different days to demonstrate minimal variability 

(Supplementary Figure 3). 

 

Relative quantification 

MiR expression was analysed using the DCt method (Schmittgen and Livak, 2008). A C. 

elegans miR mimic was used as a spiked-in control (miR-39). This allowed for the Ct values 

for the miRs of interest to be normalised to the spiked-in control. The data obtained were 

translated by the 2-DCt method. 

 

Statistical analysis 

Data are presented as mean ± standard deviation for patient characteristics and as median 

and interquartile range (IQR) for all other datasets. Each dataset was analysed for normality 

using a Shapiro-Wilk test. For non-parametric datasets, comparisons were made using the 

Mann-Whitney test or Wilcoxon matched-pairs signed rank test. For the study of patients with 

ANCA vasculitis, with 70 patients the probability is 80% that the study will detect a pre- and 

post-treatment difference in miR-126 of 65 at a two-sided 0.05 significance level. This is based 

our pilot data that demonstrated a standard deviation of the change in miR-126 pre- and post-

treatment of 190. In our pilot data the mean change in miR-126 was 125 and a change of 65 

was deemed an acceptable level of detection.  

 

 

 



Rat model of nephrotoxic nephritis (NTN) 

NTN was induced by raising a nephrotoxic serum (NTS) in rabbits to isolated sonicated rat 

glomeruli which was then injected into male Sprague-Dawley rats (1mL/200 g). A telescoped 

model of NTN was used where the rats are pre-immunised with 1 mg rabbit immunoglobulin 

before the injection of NTS (Holdsworth et al., 1981). 
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