116 research outputs found

    Blood biomarkers on admission in acute traumatic brain injury: Relations to severity, CT findings and care path in the CENTER-TBI study

    Get PDF
    BackgroundSerum biomarkers may inform and improve care in traumatic brain injury (TBI). We aimed to correlate serum biomarkers with clinical severity, care path and imaging abnormalities in TBI, and explore their incremental value over clinical characteristics in predicting computed tomographic (CT) abnormalities.MethodsWe analyzed six serum biomarkers (S100B, NSE, GFAP, UCH-L1, NFL and t-tau) obtained FindingsAll biomarkers scaled with clinical severity and care path (ER only, ward admission, or ICU), and with presence of CT abnormalities. GFAP achieved the highest discrimination for predicting CT abnormalities (AUC 0•89 [95%CI: 0•87–0•90]), with a 99% likelihood of better discriminating CT-positive patients than clinical characteristics used in contemporary decision rules. In patients with mild TBI, GFAP also showed incremental diagnostic value: discrimination increased from 0•84 [95%CI: 0•83–0•86] to 0•89 [95%CI: 0•87–0•90] when GFAP was included. Results were consistent across strata, and injury severity. Combinations of biomarkers did not improve discrimination compared to GFAP alone.InterpretationCurrently available biomarkers reflect injury severity, and serum GFAP, measured within 24 h after injury, outperforms clinical characteristics in predicting CT abnormalities. Our results support the further development of serum GFAP assays towards implementation in clinical practice, for which robust clinical assay platforms are required.FundingCENTER-TBI study was supported by the European Union 7th Framework program (EC grant 602150).</p

    Blood-Based Protein Biomarkers for the Management of Traumatic Brain Injuries in Adults Presenting to Emergency Departments with Mild Brain Injury: A Living Systematic Review and Meta-Analysis

    Get PDF
    Accurate diagnosis of traumatic brain injury (TBI) is critical to effective management and intervention, but can be challenging in patients with mild TBI. A substantial number of studies have reported the use of circulating biomarkers as signatures for TBI, capable of improving diagnostic accuracy and clinical decision making beyond current practice standards. We performed a systematic review and meta-analysis to comprehensively and critically evaluate the existing body of evidence for the use of blood protein biomarkers (S100 calcium binding protein B [S100B], glial fibrillary acidic protein [GFAP], neuron specific enolase [NSE], ubiquitin C-terminal hydrolase-L1 [UCH-L1]. tau, and neurofilament proteins) for diagnosis of intracranial lesions on CT following mild TBI. Effects of potential confounding factors and differential diagnostic performance of the included markers were explored. Further, appropriateness of study design, analysis, quality, and demonstration of clinical utility were assessed. Studies published up to October 2016 were identified through a MEDLINE®, Embase, and Cumulative Index to Nursing and Allied Health Literature (CINAHL) search. Following screening of the identified articles, 26 were selected as relevant. We found that measurement of S100B can help informed decision making in the emergency department, possibly reducing resource use; however, there is insufficient evidence that any of the other markers is ready for clinical application. Our work pointed out serious problems in the design, analysis, and reporting of many of the studies, and identified substantial heterogeneity and research gaps. These findings emphasize the importance of methodologically rigorous studies focused on a biomarker's intended use, and defining standardized, validated, and reproducible approaches. The living nature of this systematic review, which will summarize key updated infor

    Compensatory-reserve-weighted intracranial pressure versus intracranial pressure for outcome association in adult traumatic brain injury: a CENTER-TBI validation study

    Get PDF
    Background: Compensatory-reserve-weighted intracranial pressure (wICP) has recently been suggested as a supplementary measure of intracranial pressure (ICP) in adult traumatic brain injury (TBI), with a single-center study suggesting an association with mortality at 6 months. No multi-center studies exist to validate this relationship. The goal was to compare wICP to ICP for association with outcome in a multi-center TBI cohort. Methods: Using the Collaborative European Neuro Trauma Effectiveness Research in TBI (CENTER-TBI) high-resolution intensive care unit (ICU) cohort, we derived ICP and wICP (calculated as wICP = (1 12 RAP) 7 ICP; where RAP is the compensatory reserve index derived from the moving correlation between pulse amplitude of ICP and ICP). Various univariate logistic regression models were created comparing ICP and wICP to dichotomized outcome at 6 to 12 months, based on Glasgow Outcome Score\u2014Extended (GOSE) (alive/dead\u2014GOSE 65 2/GOSE = 1; favorable/unfavorable\u2014GOSE 5 to 8/GOSE 1 to 4, respectively). Models were compared using area under the receiver operating curves (AUC) and p values. Results: wICP displayed higher AUC compared to ICP on univariate regression for alive/dead outcome compared to mean ICP (AUC 0.712, 95% CI 0.615\u20130.810, p = 0.0002, and AUC 0.642, 95% CI 0.538\u2013746, p &lt; 0.0001, respectively; no significant difference on Delong\u2019s test), and for favorable/unfavorable outcome (AUC 0.627, 95% CI 0.548\u20130.705, p = 0.015, and AUC 0.495, 95% CI 0.413\u20130.577, p = 0.059; significantly different using Delong\u2019s test p = 0.002), with lower wICP values associated with improved outcomes (p &lt; 0.05 for both). These relationships on univariate analysis held true even when comparing the wICP models with those containing both ICP and RAP integrated area under the curve over time (p &lt; 0.05 for all via Delong\u2019s test). Conclusions: Compensatory-reserve-weighted ICP displays superior outcome association for both alive/dead and favorable/unfavorable dichotomized outcomes in adult TBI, through univariate analysis. Lower wICP is associated with better global outcomes. The results of this study provide multi-center validation of those seen in a previous single-center study

    Brain Temperature Influences Intracranial Pressure and Cerebral Perfusion Pressure After Traumatic Brain Injury: A CENTER-TBI Study

    Get PDF
    Background: After traumatic brain injury (TBI), fever is frequent. Brain temperature (BT), which is directly linked to body temperature, may influence brain physiology. Increased body and/or BT may cause secondary brain damage, with deleterious effects on intracranial pressure (ICP), cerebral perfusion pressure (CPP), and outcome. Methods: Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI), a prospective multicenter longitudinal study on TBI in Europe and Israel, includes a high resolution cohort of patients with data sampled at a high frequency (from 100 to 500&nbsp;Hz). In this study, simultaneous BT, ICP, and CPP recordings were investigated. A mixed-effects linear model was used to examine the association between different BT levels and ICP. We additionally focused on changes in ICP and CPP during the episodes of BT changes (Δ BT ≥ 0.5&nbsp;°C lasting from 15&nbsp;min to 3&nbsp;h) up or downward. The significance of ICP and CPP variations was estimated with the paired samples Wilcoxon test&nbsp;(also known as Wilcoxon signed-rank test). Results: Twenty-one patients with 2,435&nbsp;h of simultaneous BT and ICP monitoring were studied. All patients reached a BT of 38&nbsp;°C and experienced at least one episode of ICP above 20&nbsp;mm Hg. The linear mixed-effects model revealed an association between BT above 37.5&nbsp;°C and higher ICP levels that was not confirmed for lower BT. We identified 149 episodes of BT changes. During BT elevations (n = 79) ICP increased, whereas CPP was reduced; opposite ICP and CPP variations occurred during episodes of BT reduction (n = 70). All these changes were of moderate clinical relevance (increase of ICP of 4.5 and CPP decrease of 7.5&nbsp;mm Hg for BT rise, and ICP reduction of 1.7 and CPP elevation of 3.7&nbsp;mm Hg during BT defervescence), even if statistically significant (p &lt; 0.0001). It has to be noted, however, that a number of therapeutic interventions against intracranial hypertension was documented during those episodes. Conclusions: Patients after TBI usually develop BT &gt; 38&nbsp;°C soon after the injury. BT may influence brain physiology, as reflected by ICP and CPP. An association between BT exceeding 37.5&nbsp;°C and a higher ICP was identified but not confirmed for lower BT ranges. The relationship between BT, ICP, and CPP become clearer during rapid temperature changes. During episodes of temperature elevation, BT seems to have a significant impact on ICP and CPP

    Univariate comparison of performance of different cerebrovascular reactivity indices for outcome association in adult TBI: a CENTER-TBI study

    Get PDF
    Background: Monitoring cerebrovascular reactivity in adult traumatic brain injury (TBI) has been linked to global patient outcome. Three intra-cranial pressure (ICP)-derived indices have been described. It is unknown which index is superior for outcome association in TBI outside previous single-center evaluations. The goal of this study is to evaluate indices for 6- to 12-month outcome association using uniform data harvested in multiple centers. Methods: Using the prospectively collected data from the Collaborative European NeuroTrauma Effectiveness Research in TBI (CENTER-TBI) study, the following indices of cerebrovascular reactivity were derived: PRx (correlation between ICP and mean arterial pressure (MAP)), PAx (correlation between pulse amplitude of ICP (AMP) and MAP), and RAC (correlation between AMP and cerebral perfusion pressure (CPP)). Univariate logistic regression models were created to assess the association between vascular reactivity indices with global dichotomized outcome at 6 to 12&nbsp;months, as assessed by Glasgow Outcome Score\u2013Extended (GOSE). Models were compared via area under the receiver operating curve (AUC) and Delong\u2019s test. Results: Two separate patient groups from this cohort were assessed: the total population with available data (n = 204) and only those without decompressive craniectomy (n = 159), with identical results. PRx, PAx, and RAC perform similar in outcome association for both dichotomized outcomes, alive/dead and favorable/unfavorable, with RAC trending towards higher AUC values. There were statistically higher mean values for the index, % time above threshold, and hourly dose above threshold for each of PRx, PAx, and RAC in those patients with poor outcomes. Conclusions: PRx, PAx, and RAC appear similar in their associations with 6- to 12-month outcome in moderate/severe adult TBI, with RAC showing tendency to achieve stronger associations. Further work is required to determine the role for each of these cerebrovascular indices in monitoring of TBI patients

    Repeat traumatic brain injury exacerbates acute thalamic hyperconnectivity in humans

    Get PDF
    Repeated mild traumatic brain injury is of growing interest regarding public and sporting safety and is thought to have greater adverse or cumulative neurological effects when compared with single injury. While epidemiological links between repeated traumatic brain injury and outcome have been investigated in humans, exploration of its mechanistic substrates has been largely undertaken in animal models. We compared acute neurological effects of repeat mild traumatic brain injury (n = 21) to that of single injury (n = 21) and healthy controls (n = 76) using resting-state functional MRI and quantified thalamic functional connectivity, given previous identification of its prognostic potential in human mild traumatic brain injury and rodent repeat mild traumatic brain injury. Acute thalamocortical functional connectivity showed a rank-based trend of increasing connectivity with number of injuries, at local and global scales of investigation. Thus, history of as few as two previous injuries can induce a vulnerable neural environment of exacerbated hyperconnectivity, in otherwise healthy individuals from non-specialist populations. These results further establish thalamocortical functional connectivity as a scalable marker of acute injury and long-term neural dysfunction following mild traumatic brain injury

    Primary versus early secondary referral to a specialized neurotrauma center in patients with moderate/severe traumatic brain injury: a CENTER TBI study.

    Get PDF
    BackgroundPrehospital care for patients with traumatic brain injury (TBI) varies with some emergency medical systems recommending direct transport of patients with moderate to severe TBI to hospitals with specialist neurotrauma care (SNCs). The aim of this study is to assess variation in levels of early secondary referral within European SNCs and to compare the outcomes of directly admitted and secondarily transferred patients.MethodsPatients with moderate and severe TBI (Glasgow Coma Scale ResultsA total of 1347 moderate/severe TBI patients from 53 SNCs in 18 European countries were included. Of these 1347 patients, 195 (14.5%) were admitted after early secondary referral. Secondarily referred moderate/severe TBI patients presented more often with a CT abnormality: mass lesion (52% vs. 34%), midline shift (54% vs. 36%) and acute subdural hematoma (77% vs. 65%). After adjusting for case-mix, there was a large European variation in early secondary referral, with a median OR of 1.69 between countries. Early secondary referral was not associated with functional outcome (adjusted OR 1.07, 95% CI 0.78-1.69), nor with survival at discharge (1.05, 0.58-1.90).ConclusionsAcross Europe, substantial practice variation exists in the proportion of secondarily referred TBI patients at SNCs that is not explained by case mix. Within SNCs early secondary referral does not seem to impact functional outcome and survival after stabilisation in a non-specialised hospital. Future research should identify which patients with TBI truly benefit from direct transportation
    corecore