350 research outputs found
Analytic approach to stochastic cellular automata: exponential and inverse power distributions out of Random Domino Automaton
Inspired by extremely simplified view of the earthquakes we propose the
stochastic domino cellular automaton model exhibiting avalanches. From
elementary combinatorial arguments we derive a set of nonlinear equations
describing the automaton. Exact relations between the average parameters of the
model are presented. Depending on imposed triggering, the model reproduces both
exponential and inverse power statistics of clusters.Comment: improved, new material added; 9 pages, 3 figures, 2 table
A possible generation mechanism for the IBEX ribbon from outside the heliosphere
The brightest and most surprising feature in the first all-sky maps of
Energetic Neutral Atoms (ENA) emissions (0.2-6 keV) produced by the
Interstellar Boundary Explorer (IBEX) is an almost circular ribbon of a
~140{\deg} opening angle, centered at (l,b) = (33{\deg}, 55{\deg}), covering
the part of the celestial sphere with the lowest column densities of the Local
Interstellar Cloud (LIC). We propose a novel interpretation of the IBEX results
based on the idea of ENA produced by charge-exchange between the neutral H
atoms at the nearby edge of the LIC and the hot protons of the Local Bubble
(LB). These ENAs can reach the Sun's vicinity because of very low column
density of the intervening LIC material. We show that a plane-parallel or
slightly curved interface layer of contact between the LIC H atoms (n_H = 0.2
cm^-3, T = 6000-7000 K) and the LB protons (n_p = 0.005 cm^-3, T ~ 10^6 K),
together with indirect contribution coming from multiply-scattered ENAs from
the LB, may be able to explain both the shape of the ribbon and the observed
intensities provided that the edge is < (500-2000) AU away, the LIC proton
density is (correspondingly) < (0.04-0.01) cm^-3, and the LB contains ~1% of
non-thermal protons over the IBEX energy range. If this model is correct, then
IBEX, for the first time, has imaged in ENAs a celestial object from beyond the
confines of the heliosphere and can directly diagnose the plasma conditions in
the LB.Comment: Accepted by Ap.J.Lett
Polarization control of metal-enhanced fluorescence in hybrid assemblies of photosynthetic complexes and gold nanorods
Fluorescence imaging of hybrid nanostructures composed of a bacterial light-harvesting complex LH2 and Au nanorods with controlled coupling strength is employed to study the spectral dependence of the plasmon-induced fluorescence enhancement. Perfect matching of the plasmon resonances in the nanorods with the absorption bands of the LH2 complexes facilitates a direct comparison of the enhancement factors for longitudinal and transverse plasmon frequencies of the nanorods. We find that the fluorescence enhancement due to excitation of longitudinal resonance can be up to five-fold stronger than for the transverse one. We attribute this result, which is important for designing plasmonic functional systems, to a very different distribution of the enhancement of the electric field due to the excitation of the two characteristic plasmon modes in nanorods
Dust detection by the wave instrument on STEREO: nanoparticles picked up by the solar wind?
The STEREO/WAVES instrument has detected a very large number of intense
voltage pulses. We suggest that these events are produced by impact ionisation
of nanoparticles striking the spacecraft at a velocity of the order of
magnitude of the solar wind speed. Nanoparticles, which are half-way between
micron-sized dust and atomic ions, have such a large charge-to-mass ratio that
the electric field induced by the solar wind magnetic field accelerates them
very efficiently. Since the voltage produced by dust impacts increases very
fast with speed, such nanoparticles produce signals as high as do much larger
grains of smaller speeds. The flux of 10-nm radius grains inferred in this way
is compatible with the interplanetary dust flux model. The present results may
represent the first detection of fast nanoparticles in interplanetary space
near Earth orbit.Comment: In press in Solar Physics, 13 pages, 5 figure
Nanodust detection near 1 AU from spectral analysis of Cassini/RPWS radio data
Nanodust grains of a few nanometer in size are produced near the Sun by
collisional break-up of larger grains and picked-up by the magnetized solar
wind. They have so far been detected at 1 AU by only the two STEREO spacecraft.
Here we analyze the spectra measured by the radio and plasma wave instrument
onboard Cassini during the cruise phase close to Earth orbit; they exhibit
bursty signatures similar to those observed by the same instrument in
association to nanodust stream impacts on Cassini near Jupiter. The observed
wave level and spectral shape reveal impacts of nanoparticles at about 300
km/s, with an average flux compatible with that observed by the radio and
plasma wave instrument onboard STEREO and with the interplanetary flux models
OPTIMIST: A new conflict resolution algorithm for ACT-R.
Several studies have suggested recently that a more dynamic conflict resolution mechanism in the ACT-R cognitive architecture (Anderson & Lebiere, 1998) could improve the decision-making behaviour of cognitive models. This part of ACT-R theory is revisited and a new solution is proposed. The new algorithm (OPTIMIST) has been implemented as an overlay to the ACT-R architecture, and can be used as an alternative mechanism. The operation of the new algorithm is tested in a model of the classical Yerkes and Dodson experiement of animals' learning. When OPTIMIST is used, the resulting model fits the data better than the previous model (e.g. R2 (R squared) increases from .85 to .93 in one example)
Is the Sun Embedded in a Typical Interstellar Cloud?
The physical properties and kinematics of the partially ionized interstellar
material near the Sun are typical of warm diffuse clouds in the solar vicinity.
The interstellar magnetic field at the heliosphere and the kinematics of nearby
clouds are naturally explained in terms of the S1 superbubble shell. The
interstellar radiation field at the Sun appears to be harder than the field
ionizing ambient diffuse gas, which may be a consequence of the low opacity of
the tiny cloud surrounding the heliosphere. The spatial context of the Local
Bubble is consistent with our location in the Orion spur.Comment: "From the Outer Heliosphere to the Local Bubble", held at
International Space Sciences Institute, October 200
Mid-infrared spectra of the shocked Murchison CM chondrite: comparison with astronomical observations of dust in debris disks
We present laboratory mid-infrared transmission/absorption spectra obtained from matrix of the hydrated Murchison CM meteorite experimentally shocked at peak pressures of 10-49 GPa, and compare them to astronomical observations of circumstellar dust in different stages of the formation of planetary systems. The laboratory spectra of the Murchison samples exhibit characteristic changes in the infrared features. A weakly shocked sample (shocked at 10 GPa) shows almost no changes from the unshocked sample dominated by hydrous silicate (serpentine). Moderately shocked samples (21-34 GPa) have typical serpentine features gradually replaced by bands of amorphous material and olivine with increasing shock pressure. A strongly shocked sample (36 GPa) shows major changes due to decomposition of the serpentine and due to devolatilization. A shock melted sample (49 GPa) shows features of olivine recrystallized from melted material. The infrared spectra of the shocked Murchison samples show similarities to astronomical spectra of dust in various young stellar objects and debris disks. The spectra of highly shocked Murchison samples (36 and 49 GPa) are similar to those of dust in the debris disks of HD113766 and HD69830, and the transitional disk of HD100546. The moderately shocked samples (21-34 GPa) exhibit spectra similar to those of dust in the debris disks of Beta Pictoris and BD+20307, and the transitional disk of GM Aur. An average of the spectra of all Murchison samples (0-49 GPa) has a similarity to the spectrum of the older proto-planetary disk of SU Auriga. In the gas-rich transitional and protoplanetary disks, the abundances of amorphous silicates and gases have widely been considered to be a primary property. However, our study suggests that impact processing may play a significant role in generating secondary amorphous silicates and gases in those disks. Infrared spectra of the shocked Murchison samples also show similarities to the dust fromcomets (C/2002 V1, C/2001 RX14, 9P/Tempel 1, and Hale Bopp), suggesting that the comets also contain shocked Murchison-like material
- …