12 research outputs found

    Respiratory impedance in healthy unsedated South African infants: Effects of maternal smoking

    Get PDF
    Background and objective: Non-invasive techniques for measuring lung mechanics in infants are needed for a better understanding of lung growth and function, and to study the effects of prenatal factors on subsequent lung growth in healthy infants. The forced oscillation technique requires minimal cooperation from the individual but has rarely been used in infants. The study aims to assess the use of the forced oscillation technique to measure the influence of antenatal exposures on respiratory mechanics in unsedated infants enrolled in a birth cohort study in Cape Town, South Africa. Methods: Healthy term infants were studied at 6–10 weeks of age using the forced oscillation technique. Respiratory impedance was measured in the frequency range 8–48 Hz via a face mask during natural sleep. Respiratory system resistance, compliance and inertance were calculated from the impedance spectra. Results: Of 177 infants tested, successful measurements were obtained in 164 (93%). Median (25–75%) values for resistance, compliance and inertance were 50.2 (39.5–60.6) cmH2O.s.L−1, 0.78 (0.61–0.99) mL.cmH2O−1 and 0.062 (0.050–0.086) cmH2O.s2.L−1, respectively. As a group, male infants had 16% higher resistance (P = 0.006) and 18% lower compliance (P  = 0.02) than females. Infants whose mothers smoked during pregnancy had a 19% lower compliance than infants not exposed to tobacco smoke during pregnancy (P = 0.005). Neither maternal HIV infection nor ethnicity had a significant effect on respiratory mechanics. Conclusions: The forced oscillation technique is sensitive enough to demonstrate the effects of tobacco smoke exposure and sex in respiratory mechanics in healthy infants. This technique will facilitate assessing perinatal influences of lung function in infancy

    Advances in Understanding Environmental Risks of Red Mud After the Ajka Spill, Hungary

    Get PDF
    In the 5 years since the 2010 Ajka red mud spill (Hungary), there have been 46 scientific studies assessing the key risks and impacts associated with the largest single release of bauxite-processing residue (red mud) to the environment. These studies have provided insight into the main environmental concerns, as well as the effectiveness of remedial efforts that can inform future management of red mud elsewhere. The key immediate risks after the spill were associated with the highly caustic nature of the red mud slurry and fine particle size, which once desiccated, could generate fugitive dust. Studies on affected populations showed no major hazards identified beyond caustic exposure, while red mud dust risks were considered equal to or lesser than those provided by urban dusts of similar particle size distribution. The longer-term environmental risks were related to the saline nature of the spill material (salinization of inundated soils) and the release and the potential cycling of oxyanion-forming metals and metalloids (e.g., Al, As, Cr, Mo, and V) in the soil–water environment. Of these, those that are soluble at high pH, inefficiently removed from solution during dilution and likely to be exchangeable at ambient pH are of chief concern (e.g., Mo and V). Various ecotoxicological studies have identified negative impacts of red mud-amended soils and sediments at high volumes (typically [5 %) on different test organisms, with some evidence of molecularlevel impacts at high dose (e.g., genotoxic effects on plants and mice). These data provide a valuable database to inform future toxicological studies for red mud. However, extensive management efforts in the aftermath of the spill greatly limited these exposure risks through leachate neutralization and red mud recovery from the affected land. Monitoring of affected soils, stream sediments, waters and aquatic biota (fungi, invertebrates and fish) have all shown a very rapid recovery toward prespill conditions. The accident also prompted research that has also highlighted potential benefits of red mud use for critical raw material recovery (e.g., Ga, Co, V, rare earths, inform), carbon sequestration, biofuel crop production, and use as a soil ameliorant

    Defining "healthy' in preschool-aged children for forced oscillation technique reference equations

    Get PDF
    BACKGROUND AND OBJECTIVE: Selecting 'healthy' preschool-aged children for reference ranges may not be straightforward. Relaxing inclusion criteria for normative data does not affect spirometry z-scores. We therefore investigated the effect of similarly relaxing inclusion criteria in preschoolers on reference ranges for respiratory impedance (Zrs) using a modified forced oscillation technique (FOT). METHODS: The International Study of Asthma and Allergies in Childhood questionnaire classified 585 children into a healthy and five mutually exclusive groups. Zrs was measured between 4 and 26 Hz and resistance (R) and compliance (C) obtained by model fitting. Prediction models were determined using mixed effect models and z-scores compared between healthy children and the five groups. RESULTS: Zrs data were obtained for 494 participants (4.30 +/- 0.7 years) on 587 occasions. Comparison of the Zrs z-scores between the healthy children and the health groups found significant differences in children with asthma, current wheeze and respiratory symptoms, but not in children born preterm or with early-life wheeze. Adding these two groups to the healthy dataset had no significant effect on the distribution of z-scores and increased the size of the dataset by 22.3%. CONCLUSION: Our data suggest that preschool-aged children born preterm or with early-life wheeze can be included in FOT reference equations, while those with asthma, current wheeze and respiratory symptoms within 4 weeks of testing should be excluded. This more inclusive approach results in more robust FOT reference ranges

    Lung function and exhaled nitric oxide in healthy unsedated African infants

    No full text
    Background and objective: Population-appropriate lung function reference data are essential to accurately identify respiratory disease and measure response to interventions. There are currently no reference data in African infants. The aim was to describe normal lung function in healthy African infants. Methods: Lung function was performed on healthy South African infants enrolled in a birth cohort study, the Drakenstein child health study. Infants were excluded if they were born preterm or had a history of neonatal respiratory distress or prior respiratory tract infection. Measurements, made during natural sleep, included the forced oscillation technique, tidal breathing, exhaled nitric oxide and multiple breath washout measures. Results: Three hundred sixty-three infants were tested. Acceptable and repeatable measurements were obtained in 356 (98%) and 352 (97%) infants for tidal breathing analysis and exhaled nitric oxide outcomes, 345 (95%) infants for multiple breath washout and 293 of the 333 (88%) infants for the forced oscillation technique. Age, sex and weight-for-age z score were significantly associated with lung function measures. Conclusions: This study provides reference data for unsedated infant lung function in African infants and highlights the importance of using population-specific data

    Airway dynamics in COPD patients by within-breath impedance tracking: effects of continuous positive airway pressure

    No full text
    Tracking of the within-breath changes of respiratory mechanics using the forced oscillation technique may provide outcomes that characterise the dynamic behaviour of the airways during normal breathing. We measured respiratory resistance (Rrs) and reactance (Xrs) at 8 Hz in 55 chronic obstructive pulmonary disease (COPD) patients and 20 healthy controls, and evaluated Rrs and Xrs as functions of gas flow (V′) and volume (V) during normal breathing cycles. In 12 COPD patients, additional measurements were made at continuous positive airway pressure (CPAP) levels of 4, 8, 14 and 20 hPa. The Rrs and Xrs versus V′ and V relationships displayed a variety of loop patterns, allowing characterisation of physiological and pathological processes. The main outcomes emerging from the within-breath analysis were the Xrs versus V loop area (AXV) quantifying expiratory flow limitation, and the tidal change in Xrs during inspiration (ΔXI) reflecting alteration in lung inhomogeneity in COPD. With increasing CPAP, AXV and ΔXI approached the normal ranges, although with a large variability between individuals, whereas mean Rrs remained unchanged. Within-breath tracking of Rrs and Xrs allows an improved assessment of expiratory flow limitation and functional inhomogeneity in COPD; thereby it may help identify the physiological phenotypes of COPD and determine the optimal level of respiratory support

    Intra-breath measures of respiratory mechanics in healthy African infants detect risk of respiratory illness in early life

    No full text
    Lower respiratory tract illness (LRTI) is a leading cause of mortality and morbidity in children. Sensitive and noninvasive infant lung function techniques are needed to measure risk for and impact of LRTI on lung health. The objective of this study was to investigate whether lung function derived from the intra-breath forced oscillation technique (FOT) was able to identify healthy infants at risk of LRTI in the first year of life. Lung function was measured with the novel intra-breath FOT, in 6-week-old infants in a South African birth cohort (Drakenstein Child Health Study). LRTI during the first year was confirmed by study staff. The association between baseline lung function and LRTI was assessed with logistic regression and odds ratios determined using optimal cut-off values. Of the 627 healthy infants with successful lung function testing, 161 (24%) had 238 LRTI episodes subsequently during the first year. Volume dependence of respiratory resistance (ΔR) and reactance (ΔX) was associated with LRTI. The predictive value was stronger if LRTI was recurrent (n=50 (31%): OR 2.5, ΔX), required hospitalisation (n=38 (16%): OR 5.4, ΔR) or was associated with wheeze (n=87 (37%): OR 3.9, ΔX). Intra-breath FOT can identify healthy infants at risk of developing LRTI, wheezing or severe illness in the first year of life

    Determinants of early-life lung function in African infants

    No full text
    Background Low lung function in early life is associated with later respiratory illness. There is limited data on lung function in African infants despite a high prevalence of respiratory disease. Aim To assess the determinants of early lung function in African infants. Method Infants enrolled in a South African birth cohort, the Drakenstein child health study, had lung function measured at 6-10 weeks of age. Measurements, made with the infant breathing via a facemask during natural sleep, included tidal breathing, sulfur hexafluoride multiple breath washout and the forced oscillation technique. Information on antenatal and early postnatal exposures was collected using questionnaires and urine cotinine. Household benzene exposure was measured antenatally. Results Successful tests were obtained in 645/675 (95%) infants, median (IQR) age of 51 (46-58) days. Infant size, age and male gender were associated with larger tidal volume. Infants whose mothers smoked had lower tidal volumes (-1.6 mL (95% CI -3.0 to -0.1), p=0.04) and higher lung clearance index (0.1 turnovers (95% CI 0.01 to 0.3), p=0.03) compared with infants unexposed to tobacco smoke. Infants exposed to alcohol in utero or household benzene had lower time to peak tidal expiratory flow over total expiratory time ratios, 10% (95% CI -15.4% to -3.7%), p=0.002) and 3.0% (95% CI -5.2% to -0.7%, p=0.01) lower respectively compared with unexposed infants. HIVexposed infants had higher tidal volumes (1.7 mL (95% CI 0.06 to 3.3) p=0.04) compared with infants whose mothers were HIV negative. Conclusion We identified several factors including infant size, sex, maternal smoking, maternal alcohol, maternal HIV and household benzene associated with altered early lung function, many of which are factors amenable to public health interventions. Long-term study of lung function and respiratory disease in these children is a priority to develop strategies to strengthen child health
    corecore