116 research outputs found
Evidence for More than One Parkinson's Disease-Associated Variant within the HLA Region
Parkinson's disease (PD) was recently found to be associated with HLA in a genome-wide association study (GWAS). Follow-up GWAS's replicated the PD-HLA association but their top hits differ. Do the different hits tag the same locus or is there more than one PD-associated variant within HLA? We show that the top GWAS hits are not correlated with each other (0.00≤r2≤0.15). Using our GWAS (2000 cases, 1986 controls) we conducted step-wise conditional analysis on 107 SNPs with P<10−3 for PD-association; 103 dropped-out, four remained significant. Each SNP, when conditioned on the other three, yielded PSNP1 = 5×10−4, PSNP2 = 5×10−4, PSNP3 = 4×10−3 and PSNP4 = 0.025. The four SNPs were not correlated (0.01≤r2≤0.20). Haplotype analysis (excluding rare SNP2) revealed increasing PD risk with increasing risk alleles from OR = 1.27, P = 5×10−3 for one risk allele to OR = 1.65, P = 4×10−8 for three. Using additional 843 cases and 856 controls we replicated the independent effects of SNP1 (Pconditioned-on-SNP4 = 0.04) and SNP4 (Pconditioned-on-SNP1 = 0.04); SNP2 and SNP3 could not be replicated. In pooled GWAS and replication, SNP1 had ORconditioned-on-SNP4 = 1.23, Pconditioned-on-SNP4 = 6×10−7; SNP4 had ORconditioned-on-SNP1 = 1.18, Pconditioned-on-SNP1 = 3×10−3; and the haplotype with both risk alleles had OR = 1.48, P = 2×10−12. Genotypic OR increased with the number of risk alleles an individual possessed up to OR = 1.94, P = 2×10−11 for individuals who were homozygous for the risk allele at both SNP1 and SNP4. SNP1 is a variant in HLA-DRA and is associated with HLA-DRA, DRB5 and DQA2 gene expression. SNP4 is correlated (r2 = 0.95) with variants that are associated with HLA-DQA2 expression, and with the top HLA SNP from the IPDGC GWAS (r2 = 0.60). Our findings suggest more than one PD-HLA association; either different alleles of the same gene, or separate loci
Intrafamilial variable phenotype including corticobasal syndrome in a family with p.P301L mutation in the MAPT gene: first report in South America
Frontotemporal lobar degeneration is a neuropathological disorder that causes a variety of clinical syndromes including frontotemporal dementia (FTD), progressive supranuclear palsy, and corticobasal syndrome (CBS). FTD associated with parkinsonism occurs frequently as a result of mutations in the C9orf72 gene and also in the genes coding for the protein associated with microtubule tau (MAPT) and progranulin (GRN) on chromosome 17 (FTDP-17). Herein, we report an Argentinean family, of Basque ancestry, with an extensive family history of behavioral variant of FTD. Twenty-one members over 6 generations composed the pedigree. An extensive neurologic and neurocognitive examination was performed on 2 symptomatic individuals and 3 nonsymptomatic individuals. Two different phenotypes were identified among affected members, CBS in the proband and FTD in his brother. DNA was extracted from blood for these 5 individuals and whole-exome sequencing was performed on 3 of them followed by Sanger sequencing of candidate genes on the other 2. In both affected individuals, a missense mutation (p.P301L; rs63751273) in exon 10 of the MAPT gene (chr17q21.3) was identified. Among MAPT mutations, p.P301L is the most frequently associated to different phenotypes: (1) aggressive, symmetrical, and early-onset Parkinsonism; (2) late parkinsonism associated with FTD; and (3) progressive supranuclear palsy but only exceptionally it is reported associated to CBS. This is the first report of the occurrence of the p.P301L-MAPT mutation in South America and supports the marked phenotypic heterogeneity among members of the same family as previously reported
Modelo de predição diagnóstica para discinesias induzidas por levodopa na doença de Parkinson
Background: There are currently no methods to predict the development of levodopa-induced dyskinesia (LID), a frequent complication of Parkinson's disease (PD) treatment. Clinical predictors and single nucleotide polymorphisms (SNP) have been associated to LID in PD. Objective: To investigate the association of clinical and genetic variables with LID and to develop a diagnostic prediction model for LID in PD. Methods: We studied 430 PD patients using levodopa. The presence of LID was defined as an MDS-UPDRS Part IV score ≥1 on item 4.1. We tested the association between specific clinical variables and seven SNPs and the development of LID, using logistic regression models. Results: Regarding clinical variables, age of PD onset, disease duration, initial motor symptom and use of dopaminergic agonists were associated to LID. Only CC genotype of ADORA2A rs2298383 SNP was associated to LID after adjustment. We developed two diagnostic prediction models with reasonable accuracy, but we suggest that the clinical prediction model be used. This prediction model has an area under the curve of 0.817 (95% confidence interval [95%CI] 0.77‒0.85) and no significant lack of fit (Hosmer-Lemeshow goodness-of-fit test p=0.61). Conclusion: Predicted probability of LID can be estimated with reasonable accuracy using a diagnostic clinical prediction model which combines age of PD onset, disease duration, initial motor symptom and use of dopaminergic agonists.Introdução: No momento, não há métodos para se predizer o desenvolvimento de discinesias induzidas por levodopa (DIL), uma frequente complicação do tratamento da doença de Parkinson (DP). Preditores clínicos e polimorfismos de nucleotídeo único (SNP) têm sido associados às DIL na DP. Objetivo: Investigar a associação entre variáveis clínicas e genéticas com as DIL e desenvolver um modelo de predição diagnóstica de DIL na DP. Métodos: Foram avaliados 430 pacientes com DP em uso de levodopa. A presença de DIL foi definida como escore ≥1 no item 4.1 da MDS-UPDRS Parte IV. Nós testamos a associação entre variáveis clínicas específicas e sete SNPs com o desenvolvimento de DIL, usando modelos de regressão logística. Resultados: Em relação às variáveis clínicas, idade de início da doença, duração da doença, sintomas motores iniciais e uso de agonistas dopaminérgicos estiveram associados às DIL. Apenas o genótipo CC do SNP rs2298383 no gene ADORA2A esteve associado com DIL após o ajuste. Nós desenvolvemos dois modelos preditivos diagnósticos com acurácia razoável, mas sugerimos o uso do modelo preditivo clínico. Esse modelo de predição tem uma área sob a curva de 0,817 (intervalo de confiança de 95% [IC95%] 0,77‒0,85) e sem perda significativa de ajuste (teste de qualidade de ajuste de Hosmer-Lemeshow p=0,61). Conclusão: A probabilidade prevista de DIL pode ser estimada, com acurácia razoável, por meio do uso de um modelo preditivo diagnóstico clínico, que combina a idade de início da doença, duração da doença, sintomas motores iniciais e uso de agonistas dopaminérgicos
Sensorimotor Inhibition and Mobility in Genetic Subgroups of Parkinson's Disease
Background: Mobility and sensorimotor inhibition impairments are heterogeneous in Parkinson's disease (PD). Genetics may contribute to this heterogeneity since the apolipoprotein (APOE) ε4 allele and glucocerebrosidase (GBA) gene variants have been related to mobility impairments in otherwise healthy older adult (OA) and PD cohorts. The purpose of this study is to determine if APOE or GBA genetic status affects sensorimotor inhibition and whether the relationship between sensorimotor inhibition and mobility differs in genetic sub-groups of PD. Methods: Ninety-three participants with idiopathic PD (53 non-carriers; 23 ε4 carriers; 17 GBA variants) and 72 OA (45 non-carriers; 27 ε4 carriers) had sensorimotor inhibition characterized by short-latency afferent inhibition. Mobility was assessed in four gait domains (pace/turning, rhythm, trunk, variability) and two postural sway domains (area/jerkiness and velocity) using inertial sensors. Results: Sensorimotor inhibition was worse in the PD than OA group, with no effect of genetic status. Gait pace/turning was slower and variability was higher (p < 0.01) in PD compared to OA. Postural sway area/jerkiness (p < 0.01) and velocity (p < 0.01) were also worse in the PD than OA group. Genetic status was not significantly related to any gait or postural sway domain. Sensorimotor inhibition was significantly correlated with gait variability (r = 0.27; p = 0.02) and trunk movement (r = 0.23; p = 0.045) in the PD group. In PD non-carriers, sensorimotor inhibition related to variability (r = 0.35; p = 0.010) and trunk movement (r = 0.31; p = 0.025). In the PD ε4 group, sensorimotor inhibition only related to rhythm (r = 0.47; p = 0.024), while sensorimotor inhibition related to pace/turning (r = -0.49; p = 0.046) and rhythm (r = 0.59; p = 0.013) in the PD GBA group. Sensorimotor inhibition was significantly correlated with gait pace/turning (r = -0.27; p = 0.04) in the OA group. There was no relationship between sensorimotor inhibition and postural sway. Conclusion: ε4 and GBA genetic status did not affect sensorimotor inhibition or mobility impairments in this PD cohort. However, worse sensorimotor inhibition was associated with gait variability in PD non-carriers, but with gait rhythm in PD ε4 carriers and with gait rhythm and pace in PD with GBA variants. Impaired sensorimotor inhibition had a larger effect on mobility in people with PD than OA and affected different domains of mobility depending on genetic status
DJ-1 isoforms in whole blood as potential biomarkers of Parkinson disease
DJ-1 is a multifunctional protein that plays an important role in oxidative stress, cell death, and synucleinopathies, including Parkinson disease. Previous studies have demonstrated that total DJ-1 levels decrease in the cerebrospinal fluid, but do not change significantly in human plasma from patients with Parkinson disease when compared with controls. In this study, we measured total DJ-1 and its isoforms in whole blood of patients with Parkinson disease at various stages, Alzheimer disease, and healthy controls to identify potential peripheral biomarkers of PD. In an initial discovery study of 119 subjects, 7 DJ-1 isoforms were reliably detected, and blood levels of those with 4-hydroxy-2-nonenal modifications were discovered to be altered in late-stage Parkinson disease. This result was further confirmed in a validation study of another 114 participants, suggesting that, unlike total DJ-1 levels, post-translationally modified isoforms of DJ-1 from whole blood are candidate biomarkers of late-stage Parkinson disease
Letter to the Editor: Hypothesis: Somatic Mosaicism and Parkinson Disease
Fil: Perandones, Claudia. ANLIS Dr.C.G.Malbrán. Dirección Científico Técnica; Argentina.Fil: Pellene, Luis A. Universidad Nacional de Buenos Aires. Hospital de Clínicas. Programa de Parkinson y Movimientos Anormales; Argentina.Fil: Giugni, J. C. Universidad Nacional de Buenos Aires. Hospital de Clínicas. Programa de Parkinson y Movimientos Anormales; Argentina.Fil: Calvo, D. S. Universidad Nacional de Buenos Aires. Hospital de Clínicas. Programa de Parkinson y Movimientos Anormales; Argentina.Fil: Raina, G. B. Universidad Nacional de Buenos Aires. Hospital de Clínicas. Programa de Parkinson y Movimientos Anormales; Argentina.Fil: Cuevas, S. M. Universidad Nacional de Buenos Aires. Hospital de Clínicas. Programa de Parkinson y Movimientos Anormales; Argentina.Fil: Mata, Ignacio F. University of Washington and VA Puget Sound Health Care System, Seattle, Washington; Estados Unidos.Fil: Zabetian, Cyrus P. University of Washington and VA Puget Sound Health Care System, Seattle, Washington; Estados Unidos.Fil: Caputo, Mariela. Universidad de Buenos Aires. Escuela de Farmacia y Bioquímica. Servicio de Huellas Digitales Genéticas; Argentina.Fil: Corach, Daniel. Universidad de Buenos Aires. Escuela de Farmacia y Bioquímica. Servicio de Huellas Digitales Genéticas; Argentina.Fil: Micheli, Federico E. Universidad Nacional de Buenos Aires. Hospital de Clínicas. Programa de Parkinson y Movimientos Anormales; Argentina.Fil: Radrizzani, Martin. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología. Centro de Estudios en Salud y Medio Ambiente. Laboratorio de Citogenética Neuro y Molecular; Argentina
Neuropathological and Genetic Correlates of Survival and Dementia Onset in Synucleinopathies: A Retrospective Analysis
Background
Great heterogeneity exists in survival and the interval between onset of motor symptoms and dementia symptoms across synucleinopathies. We aimed to identify genetic and pathological markers that have the strongest association with these features of clinical heterogeneity in synucleinopathies.
Methods
In this retrospective study, we examined symptom onset, and genetic and neuropathological data from a cohort of patients with Lewy body disorders with autopsy-confirmed α synucleinopathy (as of Oct 1, 2015) who were previously included in other studies from five academic institutions in five cities in the USA. We used histopathology techniques and markers to assess the burden of tau neurofibrillary tangles, neuritic plaques, α-synuclein inclusions, and other pathological changes in cortical regions. These samples were graded on an ordinal scale and genotyped for variants associated with synucleinopathies. We assessed the interval from onset of motor symptoms to onset of dementia, and overall survival in groups with varying levels of comorbid Alzheimer\u27s disease pathology according to US National Institute on Aging–Alzheimer\u27s Association neuropathological criteria, and used multivariate regression to control for age at death and sex.
Findings
On the basis of data from 213 patients who had been followed up to autopsy and met inclusion criteria of Lewy body disorder with autopsy-confirmed α synucleinopathy, we identified 49 (23%) patients with no Alzheimer\u27s disease neuropathology, 56 (26%) with low-level Alzheimer\u27s disease neuropathology, 45 (21%) with intermediate-level Alzheimer\u27s disease neuropathology, and 63 (30%) with high-level Alzheimer\u27s disease neuropathology. As levels of Alzheimer\u27s disease neuropathology increased, cerebral α-synuclein scores were higher, and the interval between onset of motor and dementia symptoms and disease duration was shorter (p \u3c 0·0001 for all comparisons). Multivariate regression showed independent negative associations of cerebral tau neurofibrillary tangles score with the interval between onset of motor and dementia symptoms (β −4·0, 95% CI −5·5 to −2·6; p \u3c 0·0001; R 2 0·22, p \u3c 0·0001) and with survival (–2·0, −3·2 to −0·8; 0·003; 0·15, \u3c 0·0001) in models that included age at death, sex, cerebral neuritic plaque scores, cerebral α-synuclein scores, presence of cerebrovascular disease, MAPT haplotype, and APOE genotype as covariates.
Interpretation
Alzheimer\u27s disease neuropathology is common in synucleinopathies and confers a worse prognosis for each increasing level of neuropathological change. Cerebral neurofibrillary tangles burden, in addition to α-synuclein pathology and amyloid plaque pathology, are the strongest pathological predictors of a shorter interval between onset of motor and dementia symptoms and survival. Diagnostic criteria based on reliable biomarkers for Alzheimer\u27s disease neuropathology in synucleinopathies should help to identify the most appropriate patients for clinical trials of emerging therapies targeting tau, amyloid-β or α synuclein, and to stratify them by level of Alzheimer\u27s disease neuropathology
Variable frequency of LRRK2 variants in the Latin American research consortium on the genetics of Parkinson's disease (LARGE-PD), a case of ancestry
ABSTARCT: Mutations in Leucine-Rich Repeat Kinase 2 (LRRK2), primarily located in codons G2019 and R1441, represent the most common genetic cause of Parkinson's disease in European-derived populations. However, little is known about the frequency of these mutations in Latin American populations. In addition, a prior study suggested that a LRRK2 polymorphism (p.Q1111H) specific to Latino and Amerindian populations might be a risk factor for Parkinson's disease, but this finding requires replication. We screened 1734 Parkinson's disease patients and 1097 controls enrolled in the Latin American Research Consortium on the Genetics of Parkinson's disease (LARGE-PD), which includes sites in Argentina, Brazil, Colombia, Ecuador, Peru, and Uruguay. Genotypes were determined by TaqMan assay (p.G2019S and p.Q1111H) or by sequencing of exon 31 (p.R1441C/G/H/S). Admixture proportion was determined using a panel of 29 ancestry informative markers. We identified a total of 29 Parkinson's disease patients (1.7%) who carried p.G2019S and the frequency ranged from 0.2% in Peru to 4.2% in Uruguay. Only two Parkinson's disease patients carried p.R1441G and one patient carried p.R1441C. There was no significant difference in the frequency of p.Q1111H in patients (3.8%) compared to controls (3.1%; OR 1.02, p = 0.873). The frequency of LRRK2-p.G2019S varied greatly between different Latin American countries and was directly correlated with the amount of European ancestry observed. p.R1441G is rare in Latin America despite the large genetic contribution made by settlers from Spain, where the mutation is relatively common
Genome-Wide Gene-Environment Study Identifies Glutamate Receptor Gene GRIN2A as a Parkinson's Disease Modifier Gene via Interaction with Coffee
Our aim was to identify genes that influence the inverse association of coffee with the risk of developing Parkinson's disease (PD). We used genome-wide genotype data and lifetime caffeinated-coffee-consumption data on 1,458 persons with PD and 931 without PD from the NeuroGenetics Research Consortium (NGRC), and we performed a genome-wide association and interaction study (GWAIS), testing each SNP's main-effect plus its interaction with coffee, adjusting for sex, age, and two principal components. We then stratified subjects as heavy or light coffee-drinkers and performed genome-wide association study (GWAS) in each group. We replicated the most significant SNP. Finally, we imputed the NGRC dataset, increasing genomic coverage to examine the region of interest in detail. The primary analyses (GWAIS, GWAS, Replication) were performed using genotyped data. In GWAIS, the most significant signal came from rs4998386 and the neighboring SNPs in GRIN2A. GRIN2A encodes an NMDA-glutamate-receptor subunit and regulates excitatory neurotransmission in the brain. Achieving P2df = 10−6, GRIN2A surpassed all known PD susceptibility genes in significance in the GWAIS. In stratified GWAS, the GRIN2A signal was present in heavy coffee-drinkers (OR = 0.43; P = 6×10−7) but not in light coffee-drinkers. The a priori Replication hypothesis that “Among heavy coffee-drinkers, rs4998386_T carriers have lower PD risk than rs4998386_CC carriers” was confirmed: ORReplication = 0.59, PReplication = 10−3; ORPooled = 0.51, PPooled = 7×10−8. Compared to light coffee-drinkers with rs4998386_CC genotype, heavy coffee-drinkers with rs4998386_CC genotype had 18% lower risk (P = 3×10−3), whereas heavy coffee-drinkers with rs4998386_TC genotype had 59% lower risk (P = 6×10−13). Imputation revealed a block of SNPs that achieved P2df<5×10−8 in GWAIS, and OR = 0.41, P = 3×10−8 in heavy coffee-drinkers. This study is proof of concept that inclusion of environmental factors can help identify genes that are missed in GWAS. Both adenosine antagonists (caffeine-like) and glutamate antagonists (GRIN2A-related) are being tested in clinical trials for treatment of PD. GRIN2A may be a useful pharmacogenetic marker for subdividing individuals in clinical trials to determine which medications might work best for which patients
Genomewide Association Studies of LRRK2 Modifiers of Parkinson's Disease.
OBJECTIVE: The aim of this study was to search for genes/variants that modify the effect of LRRK2 mutations in terms of penetrance and age-at-onset of Parkinson's disease. METHODS: We performed the first genomewide association study of penetrance and age-at-onset of Parkinson's disease in LRRK2 mutation carriers (776 cases and 1,103 non-cases at their last evaluation). Cox proportional hazard models and linear mixed models were used to identify modifiers of penetrance and age-at-onset of LRRK2 mutations, respectively. We also investigated whether a polygenic risk score derived from a published genomewide association study of Parkinson's disease was able to explain variability in penetrance and age-at-onset in LRRK2 mutation carriers. RESULTS: A variant located in the intronic region of CORO1C on chromosome 12 (rs77395454; p value = 2.5E-08, beta = 1.27, SE = 0.23, risk allele: C) met genomewide significance for the penetrance model. Co-immunoprecipitation analyses of LRRK2 and CORO1C supported an interaction between these 2 proteins. A region on chromosome 3, within a previously reported linkage peak for Parkinson's disease susceptibility, showed suggestive associations in both models (penetrance top variant: p value = 1.1E-07; age-at-onset top variant: p value = 9.3E-07). A polygenic risk score derived from publicly available Parkinson's disease summary statistics was a significant predictor of penetrance, but not of age-at-onset. INTERPRETATION: This study suggests that variants within or near CORO1C may modify the penetrance of LRRK2 mutations. In addition, common Parkinson's disease associated variants collectively increase the penetrance of LRRK2 mutations. ANN NEUROL 2021;90:82-94
- …